Metamath Proof Explorer


Theorem lmdvglim

Description: If a monotonic real number sequence F diverges, it converges in the extended real numbers and its limit is plus infinity. (Contributed by Thierry Arnoux, 3-Aug-2017)

Ref Expression
Hypotheses lmdvglim.j J = TopOpen 𝑠 * 𝑠 0 +∞
lmdvglim.1 φ F : 0 +∞
lmdvglim.2 φ k F k F k + 1
lmdvglim.3 φ ¬ F dom
Assertion lmdvglim φ F t J +∞

Proof

Step Hyp Ref Expression
1 lmdvglim.j J = TopOpen 𝑠 * 𝑠 0 +∞
2 lmdvglim.1 φ F : 0 +∞
3 lmdvglim.2 φ k F k F k + 1
4 lmdvglim.3 φ ¬ F dom
5 2 3 4 lmdvg φ x j k j x < F k
6 icossicc 0 +∞ 0 +∞
7 fss F : 0 +∞ 0 +∞ 0 +∞ F : 0 +∞
8 2 6 7 sylancl φ F : 0 +∞
9 eqidd φ k F k = F k
10 1 8 9 lmxrge0 φ F t J +∞ x j k j x < F k
11 5 10 mpbird φ F t J +∞