Metamath Proof Explorer


Theorem lmff

Description: If F converges, there is some upper integer set on which F is a total function. (Contributed by Mario Carneiro, 31-Dec-2013)

Ref Expression
Hypotheses lmff.1 Z = M
lmff.3 φ J TopOn X
lmff.4 φ M
lmff.5 φ F dom t J
Assertion lmff φ j Z F j : j X

Proof

Step Hyp Ref Expression
1 lmff.1 Z = M
2 lmff.3 φ J TopOn X
3 lmff.4 φ M
4 lmff.5 φ F dom t J
5 eldm2g F dom t J F dom t J y F y t J
6 5 ibi F dom t J y F y t J
7 4 6 syl φ y F y t J
8 df-br F t J y F y t J
9 8 exbii y F t J y y F y t J
10 7 9 sylibr φ y F t J y
11 lmcl J TopOn X F t J y y X
12 2 11 sylan φ F t J y y X
13 eleq2 j = X y j y X
14 feq3 j = X F x : x j F x : x X
15 14 rexbidv j = X x ran F x : x j x ran F x : x X
16 13 15 imbi12d j = X y j x ran F x : x j y X x ran F x : x X
17 2 lmbr φ F t J y F X 𝑝𝑚 y X j J y j x ran F x : x j
18 17 biimpa φ F t J y F X 𝑝𝑚 y X j J y j x ran F x : x j
19 18 simp3d φ F t J y j J y j x ran F x : x j
20 toponmax J TopOn X X J
21 2 20 syl φ X J
22 21 adantr φ F t J y X J
23 16 19 22 rspcdva φ F t J y y X x ran F x : x X
24 12 23 mpd φ F t J y x ran F x : x X
25 10 24 exlimddv φ x ran F x : x X
26 uzf : 𝒫
27 ffn : 𝒫 Fn
28 reseq2 x = j F x = F j
29 id x = j x = j
30 28 29 feq12d x = j F x : x X F j : j X
31 30 rexrn Fn x ran F x : x X j F j : j X
32 26 27 31 mp2b x ran F x : x X j F j : j X
33 25 32 sylib φ j F j : j X
34 1 rexuz3 M j Z x j x dom F F x X j x j x dom F F x X
35 3 34 syl φ j Z x j x dom F F x X j x j x dom F F x X
36 18 simp1d φ F t J y F X 𝑝𝑚
37 10 36 exlimddv φ F X 𝑝𝑚
38 pmfun F X 𝑝𝑚 Fun F
39 37 38 syl φ Fun F
40 ffvresb Fun F F j : j X x j x dom F F x X
41 39 40 syl φ F j : j X x j x dom F F x X
42 41 rexbidv φ j Z F j : j X j Z x j x dom F F x X
43 41 rexbidv φ j F j : j X j x j x dom F F x X
44 35 42 43 3bitr4d φ j Z F j : j X j F j : j X
45 33 44 mpbird φ j Z F j : j X