Metamath Proof Explorer


Theorem lmflf

Description: The topological limit relation on functions can be written in terms of the filter limit along the filter generated by the upper integer sets. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses lmflf.1 Z = M
lmflf.2 L = Z filGen Z
Assertion lmflf J TopOn X M F : Z X F t J P P J fLimf L F

Proof

Step Hyp Ref Expression
1 lmflf.1 Z = M
2 lmflf.2 L = Z filGen Z
3 uzf : 𝒫
4 ffn : 𝒫 Fn
5 3 4 ax-mp Fn
6 uzssz M
7 1 6 eqsstri Z
8 imaeq2 y = j F y = F j
9 8 sseq1d y = j F y x F j x
10 9 rexima Fn Z y Z F y x j Z F j x
11 5 7 10 mp2an y Z F y x j Z F j x
12 simpl3 J TopOn X M F : Z X j Z F : Z X
13 12 ffund J TopOn X M F : Z X j Z Fun F
14 uzss j M j M
15 14 1 eleq2s j Z j M
16 15 adantl J TopOn X M F : Z X j Z j M
17 12 fdmd J TopOn X M F : Z X j Z dom F = Z
18 17 1 eqtrdi J TopOn X M F : Z X j Z dom F = M
19 16 18 sseqtrrd J TopOn X M F : Z X j Z j dom F
20 funimass4 Fun F j dom F F j x k j F k x
21 13 19 20 syl2anc J TopOn X M F : Z X j Z F j x k j F k x
22 21 rexbidva J TopOn X M F : Z X j Z F j x j Z k j F k x
23 11 22 bitr2id J TopOn X M F : Z X j Z k j F k x y Z F y x
24 23 imbi2d J TopOn X M F : Z X P x j Z k j F k x P x y Z F y x
25 24 ralbidv J TopOn X M F : Z X x J P x j Z k j F k x x J P x y Z F y x
26 25 anbi2d J TopOn X M F : Z X P X x J P x j Z k j F k x P X x J P x y Z F y x
27 simp1 J TopOn X M F : Z X J TopOn X
28 simp2 J TopOn X M F : Z X M
29 simp3 J TopOn X M F : Z X F : Z X
30 eqidd J TopOn X M F : Z X k Z F k = F k
31 27 1 28 29 30 lmbrf J TopOn X M F : Z X F t J P P X x J P x j Z k j F k x
32 1 uzfbas M Z fBas Z
33 2 flffbas J TopOn X Z fBas Z F : Z X P J fLimf L F P X x J P x y Z F y x
34 32 33 syl3an2 J TopOn X M F : Z X P J fLimf L F P X x J P x y Z F y x
35 26 31 34 3bitr4d J TopOn X M F : Z X F t J P P J fLimf L F