Metamath Proof Explorer


Theorem lmfpm

Description: If F converges, then F is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013)

Ref Expression
Assertion lmfpm J TopOn X F t J P F X 𝑝𝑚

Proof

Step Hyp Ref Expression
1 id J TopOn X J TopOn X
2 1 lmbr J TopOn X F t J P F X 𝑝𝑚 P X u J P u y ran F y : y u
3 2 biimpa J TopOn X F t J P F X 𝑝𝑚 P X u J P u y ran F y : y u
4 3 simp1d J TopOn X F t J P F X 𝑝𝑚