Metamath Proof Explorer


Theorem lmfss

Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006) (Revised by Mario Carneiro, 23-Dec-2013)

Ref Expression
Assertion lmfss J TopOn X F t J P F × X

Proof

Step Hyp Ref Expression
1 lmfpm J TopOn X F t J P F X 𝑝𝑚
2 toponmax J TopOn X X J
3 cnex V
4 elpmg X J V F X 𝑝𝑚 Fun F F × X
5 2 3 4 sylancl J TopOn X F X 𝑝𝑚 Fun F F × X
6 5 adantr J TopOn X F t J P F X 𝑝𝑚 Fun F F × X
7 1 6 mpbid J TopOn X F t J P Fun F F × X
8 7 simprd J TopOn X F t J P F × X