Metamath Proof Explorer


Theorem lmhmclm

Description: The domain of a linear operator is a subcomplex module iff the range is. (Contributed by Mario Carneiro, 21-Oct-2015)

Ref Expression
Assertion lmhmclm F S LMHom T S CMod T CMod

Proof

Step Hyp Ref Expression
1 lmhmlmod1 F S LMHom T S LMod
2 lmhmlmod2 F S LMHom T T LMod
3 1 2 2thd F S LMHom T S LMod T LMod
4 eqid Scalar S = Scalar S
5 eqid Scalar T = Scalar T
6 4 5 lmhmsca F S LMHom T Scalar T = Scalar S
7 6 eqcomd F S LMHom T Scalar S = Scalar T
8 7 fveq2d F S LMHom T Base Scalar S = Base Scalar T
9 8 oveq2d F S LMHom T fld 𝑠 Base Scalar S = fld 𝑠 Base Scalar T
10 7 9 eqeq12d F S LMHom T Scalar S = fld 𝑠 Base Scalar S Scalar T = fld 𝑠 Base Scalar T
11 8 eleq1d F S LMHom T Base Scalar S SubRing fld Base Scalar T SubRing fld
12 3 10 11 3anbi123d F S LMHom T S LMod Scalar S = fld 𝑠 Base Scalar S Base Scalar S SubRing fld T LMod Scalar T = fld 𝑠 Base Scalar T Base Scalar T SubRing fld
13 eqid Base Scalar S = Base Scalar S
14 4 13 isclm S CMod S LMod Scalar S = fld 𝑠 Base Scalar S Base Scalar S SubRing fld
15 eqid Base Scalar T = Base Scalar T
16 5 15 isclm T CMod T LMod Scalar T = fld 𝑠 Base Scalar T Base Scalar T SubRing fld
17 12 14 16 3bitr4g F S LMHom T S CMod T CMod