Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
lmhmlmod1 |
|
8 |
7
|
adantl |
|
9 |
|
lmhmlmod2 |
|
10 |
9
|
adantr |
|
11 |
|
eqid |
|
12 |
11 5
|
lmhmsca |
|
13 |
4 11
|
lmhmsca |
|
14 |
12 13
|
sylan9eq |
|
15 |
|
lmghm |
|
16 |
|
lmghm |
|
17 |
|
ghmco |
|
18 |
15 16 17
|
syl2an |
|
19 |
|
simplr |
|
20 |
|
simprl |
|
21 |
|
simprr |
|
22 |
|
eqid |
|
23 |
4 6 1 2 22
|
lmhmlin |
|
24 |
19 20 21 23
|
syl3anc |
|
25 |
24
|
fveq2d |
|
26 |
|
simpll |
|
27 |
13
|
fveq2d |
|
28 |
27
|
ad2antlr |
|
29 |
20 28
|
eleqtrrd |
|
30 |
|
eqid |
|
31 |
1 30
|
lmhmf |
|
32 |
31
|
adantl |
|
33 |
32
|
ffvelrnda |
|
34 |
33
|
adantrl |
|
35 |
|
eqid |
|
36 |
11 35 30 22 3
|
lmhmlin |
|
37 |
26 29 34 36
|
syl3anc |
|
38 |
25 37
|
eqtrd |
|
39 |
32
|
ffnd |
|
40 |
7
|
ad2antlr |
|
41 |
1 4 2 6
|
lmodvscl |
|
42 |
40 20 21 41
|
syl3anc |
|
43 |
|
fvco2 |
|
44 |
39 42 43
|
syl2an2r |
|
45 |
|
fvco2 |
|
46 |
39 21 45
|
syl2an2r |
|
47 |
46
|
oveq2d |
|
48 |
38 44 47
|
3eqtr4d |
|
49 |
1 2 3 4 5 6 8 10 14 18 48
|
islmhmd |
|