Metamath Proof Explorer


Theorem lmhmco

Description: The composition of two module-linear functions is module-linear. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Assertion lmhmco F N LMHom O G M LMHom N F G M LMHom O

Proof

Step Hyp Ref Expression
1 eqid Base M = Base M
2 eqid M = M
3 eqid O = O
4 eqid Scalar M = Scalar M
5 eqid Scalar O = Scalar O
6 eqid Base Scalar M = Base Scalar M
7 lmhmlmod1 G M LMHom N M LMod
8 7 adantl F N LMHom O G M LMHom N M LMod
9 lmhmlmod2 F N LMHom O O LMod
10 9 adantr F N LMHom O G M LMHom N O LMod
11 eqid Scalar N = Scalar N
12 11 5 lmhmsca F N LMHom O Scalar O = Scalar N
13 4 11 lmhmsca G M LMHom N Scalar N = Scalar M
14 12 13 sylan9eq F N LMHom O G M LMHom N Scalar O = Scalar M
15 lmghm F N LMHom O F N GrpHom O
16 lmghm G M LMHom N G M GrpHom N
17 ghmco F N GrpHom O G M GrpHom N F G M GrpHom O
18 15 16 17 syl2an F N LMHom O G M LMHom N F G M GrpHom O
19 simplr F N LMHom O G M LMHom N x Base Scalar M y Base M G M LMHom N
20 simprl F N LMHom O G M LMHom N x Base Scalar M y Base M x Base Scalar M
21 simprr F N LMHom O G M LMHom N x Base Scalar M y Base M y Base M
22 eqid N = N
23 4 6 1 2 22 lmhmlin G M LMHom N x Base Scalar M y Base M G x M y = x N G y
24 19 20 21 23 syl3anc F N LMHom O G M LMHom N x Base Scalar M y Base M G x M y = x N G y
25 24 fveq2d F N LMHom O G M LMHom N x Base Scalar M y Base M F G x M y = F x N G y
26 simpll F N LMHom O G M LMHom N x Base Scalar M y Base M F N LMHom O
27 13 fveq2d G M LMHom N Base Scalar N = Base Scalar M
28 27 ad2antlr F N LMHom O G M LMHom N x Base Scalar M y Base M Base Scalar N = Base Scalar M
29 20 28 eleqtrrd F N LMHom O G M LMHom N x Base Scalar M y Base M x Base Scalar N
30 eqid Base N = Base N
31 1 30 lmhmf G M LMHom N G : Base M Base N
32 31 adantl F N LMHom O G M LMHom N G : Base M Base N
33 32 ffvelrnda F N LMHom O G M LMHom N y Base M G y Base N
34 33 adantrl F N LMHom O G M LMHom N x Base Scalar M y Base M G y Base N
35 eqid Base Scalar N = Base Scalar N
36 11 35 30 22 3 lmhmlin F N LMHom O x Base Scalar N G y Base N F x N G y = x O F G y
37 26 29 34 36 syl3anc F N LMHom O G M LMHom N x Base Scalar M y Base M F x N G y = x O F G y
38 25 37 eqtrd F N LMHom O G M LMHom N x Base Scalar M y Base M F G x M y = x O F G y
39 32 ffnd F N LMHom O G M LMHom N G Fn Base M
40 7 ad2antlr F N LMHom O G M LMHom N x Base Scalar M y Base M M LMod
41 1 4 2 6 lmodvscl M LMod x Base Scalar M y Base M x M y Base M
42 40 20 21 41 syl3anc F N LMHom O G M LMHom N x Base Scalar M y Base M x M y Base M
43 fvco2 G Fn Base M x M y Base M F G x M y = F G x M y
44 39 42 43 syl2an2r F N LMHom O G M LMHom N x Base Scalar M y Base M F G x M y = F G x M y
45 fvco2 G Fn Base M y Base M F G y = F G y
46 39 21 45 syl2an2r F N LMHom O G M LMHom N x Base Scalar M y Base M F G y = F G y
47 46 oveq2d F N LMHom O G M LMHom N x Base Scalar M y Base M x O F G y = x O F G y
48 38 44 47 3eqtr4d F N LMHom O G M LMHom N x Base Scalar M y Base M F G x M y = x O F G y
49 1 2 3 4 5 6 8 10 14 18 48 islmhmd F N LMHom O G M LMHom N F G M LMHom O