Metamath Proof Explorer


Theorem lmhmfgima

Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Hypotheses lmhmfgima.y Y = T 𝑠 F A
lmhmfgima.x X = S 𝑠 A
lmhmfgima.u U = LSubSp S
lmhmfgima.xf φ X LFinGen
lmhmfgima.a φ A U
lmhmfgima.f φ F S LMHom T
Assertion lmhmfgima φ Y LFinGen

Proof

Step Hyp Ref Expression
1 lmhmfgima.y Y = T 𝑠 F A
2 lmhmfgima.x X = S 𝑠 A
3 lmhmfgima.u U = LSubSp S
4 lmhmfgima.xf φ X LFinGen
5 lmhmfgima.a φ A U
6 lmhmfgima.f φ F S LMHom T
7 lmhmlmod1 F S LMHom T S LMod
8 6 7 syl φ S LMod
9 eqid LSpan S = LSpan S
10 eqid Base S = Base S
11 2 3 9 10 islssfg2 S LMod A U X LFinGen x 𝒫 Base S Fin LSpan S x = A
12 8 5 11 syl2anc φ X LFinGen x 𝒫 Base S Fin LSpan S x = A
13 4 12 mpbid φ x 𝒫 Base S Fin LSpan S x = A
14 inss1 𝒫 Base S Fin 𝒫 Base S
15 14 sseli x 𝒫 Base S Fin x 𝒫 Base S
16 15 elpwid x 𝒫 Base S Fin x Base S
17 eqid LSpan T = LSpan T
18 10 9 17 lmhmlsp F S LMHom T x Base S F LSpan S x = LSpan T F x
19 6 16 18 syl2an φ x 𝒫 Base S Fin F LSpan S x = LSpan T F x
20 19 oveq2d φ x 𝒫 Base S Fin T 𝑠 F LSpan S x = T 𝑠 LSpan T F x
21 lmhmlmod2 F S LMHom T T LMod
22 6 21 syl φ T LMod
23 22 adantr φ x 𝒫 Base S Fin T LMod
24 imassrn F x ran F
25 eqid Base T = Base T
26 10 25 lmhmf F S LMHom T F : Base S Base T
27 6 26 syl φ F : Base S Base T
28 27 frnd φ ran F Base T
29 24 28 sstrid φ F x Base T
30 29 adantr φ x 𝒫 Base S Fin F x Base T
31 inss2 𝒫 Base S Fin Fin
32 31 sseli x 𝒫 Base S Fin x Fin
33 32 adantl φ x 𝒫 Base S Fin x Fin
34 27 ffund φ Fun F
35 34 adantr φ x 𝒫 Base S Fin Fun F
36 16 adantl φ x 𝒫 Base S Fin x Base S
37 27 fdmd φ dom F = Base S
38 37 adantr φ x 𝒫 Base S Fin dom F = Base S
39 36 38 sseqtrrd φ x 𝒫 Base S Fin x dom F
40 fores Fun F x dom F F x : x onto F x
41 35 39 40 syl2anc φ x 𝒫 Base S Fin F x : x onto F x
42 fofi x Fin F x : x onto F x F x Fin
43 33 41 42 syl2anc φ x 𝒫 Base S Fin F x Fin
44 eqid T 𝑠 LSpan T F x = T 𝑠 LSpan T F x
45 17 25 44 islssfgi T LMod F x Base T F x Fin T 𝑠 LSpan T F x LFinGen
46 23 30 43 45 syl3anc φ x 𝒫 Base S Fin T 𝑠 LSpan T F x LFinGen
47 20 46 eqeltrd φ x 𝒫 Base S Fin T 𝑠 F LSpan S x LFinGen
48 imaeq2 LSpan S x = A F LSpan S x = F A
49 48 oveq2d LSpan S x = A T 𝑠 F LSpan S x = T 𝑠 F A
50 49 eleq1d LSpan S x = A T 𝑠 F LSpan S x LFinGen T 𝑠 F A LFinGen
51 47 50 syl5ibcom φ x 𝒫 Base S Fin LSpan S x = A T 𝑠 F A LFinGen
52 51 rexlimdva φ x 𝒫 Base S Fin LSpan S x = A T 𝑠 F A LFinGen
53 13 52 mpd φ T 𝑠 F A LFinGen
54 1 53 eqeltrid φ Y LFinGen