Description: A homomorphism maps finitely generated submodules to finitely generated submodules. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmfgima.y | |
|
| lmhmfgima.x | |
||
| lmhmfgima.u | |
||
| lmhmfgima.xf | |
||
| lmhmfgima.a | |
||
| lmhmfgima.f | |
||
| Assertion | lmhmfgima | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmfgima.y | |
|
| 2 | lmhmfgima.x | |
|
| 3 | lmhmfgima.u | |
|
| 4 | lmhmfgima.xf | |
|
| 5 | lmhmfgima.a | |
|
| 6 | lmhmfgima.f | |
|
| 7 | lmhmlmod1 | |
|
| 8 | 6 7 | syl | |
| 9 | eqid | |
|
| 10 | eqid | |
|
| 11 | 2 3 9 10 | islssfg2 | |
| 12 | 8 5 11 | syl2anc | |
| 13 | 4 12 | mpbid | |
| 14 | inss1 | |
|
| 15 | 14 | sseli | |
| 16 | 15 | elpwid | |
| 17 | eqid | |
|
| 18 | 10 9 17 | lmhmlsp | |
| 19 | 6 16 18 | syl2an | |
| 20 | 19 | oveq2d | |
| 21 | lmhmlmod2 | |
|
| 22 | 6 21 | syl | |
| 23 | 22 | adantr | |
| 24 | imassrn | |
|
| 25 | eqid | |
|
| 26 | 10 25 | lmhmf | |
| 27 | 6 26 | syl | |
| 28 | 27 | frnd | |
| 29 | 24 28 | sstrid | |
| 30 | 29 | adantr | |
| 31 | inss2 | |
|
| 32 | 31 | sseli | |
| 33 | 32 | adantl | |
| 34 | 27 | ffund | |
| 35 | 34 | adantr | |
| 36 | 16 | adantl | |
| 37 | 27 | fdmd | |
| 38 | 37 | adantr | |
| 39 | 36 38 | sseqtrrd | |
| 40 | fores | |
|
| 41 | 35 39 40 | syl2anc | |
| 42 | fofi | |
|
| 43 | 33 41 42 | syl2anc | |
| 44 | eqid | |
|
| 45 | 17 25 44 | islssfgi | |
| 46 | 23 30 43 45 | syl3anc | |
| 47 | 20 46 | eqeltrd | |
| 48 | imaeq2 | |
|
| 49 | 48 | oveq2d | |
| 50 | 49 | eleq1d | |
| 51 | 47 50 | syl5ibcom | |
| 52 | 51 | rexlimdva | |
| 53 | 13 52 | mpd | |
| 54 | 1 53 | eqeltrid | |