Metamath Proof Explorer


Theorem lmhmimasvsca

Description: Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses lmhmimasvsca.w W = F 𝑠 V
lmhmimasvsca.b B = Base V
lmhmimasvsca.c C = Base W
lmhmimasvsca.x φ X K
lmhmimasvsca.y φ Y B
lmhmimasvsca.1 φ F : B onto C
lmhmimasvsca.f φ F V LMHom W
lmhmimasvsca.2 · ˙ = V
lmhmimasvsca.3 × ˙ = W
lmhmimasvsca.k K = Base Scalar V
Assertion lmhmimasvsca φ X × ˙ F Y = F X · ˙ Y

Proof

Step Hyp Ref Expression
1 lmhmimasvsca.w W = F 𝑠 V
2 lmhmimasvsca.b B = Base V
3 lmhmimasvsca.c C = Base W
4 lmhmimasvsca.x φ X K
5 lmhmimasvsca.y φ Y B
6 lmhmimasvsca.1 φ F : B onto C
7 lmhmimasvsca.f φ F V LMHom W
8 lmhmimasvsca.2 · ˙ = V
9 lmhmimasvsca.3 × ˙ = W
10 lmhmimasvsca.k K = Base Scalar V
11 1 a1i φ W = F 𝑠 V
12 2 a1i φ B = Base V
13 lmhmlmod1 F V LMHom W V LMod
14 7 13 syl φ V LMod
15 eqid Scalar V = Scalar V
16 simpr φ p K a B q B F a = F q F a = F q
17 16 oveq2d φ p K a B q B F a = F q p × ˙ F a = p × ˙ F q
18 7 ad2antrr φ p K a B q B F a = F q F V LMHom W
19 simplr1 φ p K a B q B F a = F q p K
20 simplr2 φ p K a B q B F a = F q a B
21 15 10 2 8 9 lmhmlin F V LMHom W p K a B F p · ˙ a = p × ˙ F a
22 18 19 20 21 syl3anc φ p K a B q B F a = F q F p · ˙ a = p × ˙ F a
23 simplr3 φ p K a B q B F a = F q q B
24 15 10 2 8 9 lmhmlin F V LMHom W p K q B F p · ˙ q = p × ˙ F q
25 18 19 23 24 syl3anc φ p K a B q B F a = F q F p · ˙ q = p × ˙ F q
26 17 22 25 3eqtr4d φ p K a B q B F a = F q F p · ˙ a = F p · ˙ q
27 26 ex φ p K a B q B F a = F q F p · ˙ a = F p · ˙ q
28 11 12 6 14 15 10 8 9 27 imasvscaval φ X K Y B X × ˙ F Y = F X · ˙ Y
29 4 5 28 mpd3an23 φ X × ˙ F Y = F X · ˙ Y