Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
lmhmkerlss
Next ⟩
reslmhm
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmhmkerlss
Description:
The kernel of a homomorphism is a submodule.
(Contributed by
Stefan O'Rear
, 1-Jan-2015)
Ref
Expression
Hypotheses
lmhmkerlss.k
⊢
K
=
F
-1
0
˙
lmhmkerlss.z
⊢
0
˙
=
0
T
lmhmkerlss.u
⊢
U
=
LSubSp
⁡
S
Assertion
lmhmkerlss
⊢
F
∈
S
LMHom
T
→
K
∈
U
Proof
Step
Hyp
Ref
Expression
1
lmhmkerlss.k
⊢
K
=
F
-1
0
˙
2
lmhmkerlss.z
⊢
0
˙
=
0
T
3
lmhmkerlss.u
⊢
U
=
LSubSp
⁡
S
4
lmhmlmod2
⊢
F
∈
S
LMHom
T
→
T
∈
LMod
5
eqid
⊢
LSubSp
⁡
T
=
LSubSp
⁡
T
6
2
5
lsssn0
⊢
T
∈
LMod
→
0
˙
∈
LSubSp
⁡
T
7
4
6
syl
⊢
F
∈
S
LMHom
T
→
0
˙
∈
LSubSp
⁡
T
8
3
5
lmhmpreima
⊢
F
∈
S
LMHom
T
∧
0
˙
∈
LSubSp
⁡
T
→
F
-1
0
˙
∈
U
9
7
8
mpdan
⊢
F
∈
S
LMHom
T
→
F
-1
0
˙
∈
U
10
1
9
eqeltrid
⊢
F
∈
S
LMHom
T
→
K
∈
U