Metamath Proof Explorer


Theorem lmhmkerlss

Description: The kernel of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmkerlss.k K = F -1 0 ˙
lmhmkerlss.z 0 ˙ = 0 T
lmhmkerlss.u U = LSubSp S
Assertion lmhmkerlss F S LMHom T K U

Proof

Step Hyp Ref Expression
1 lmhmkerlss.k K = F -1 0 ˙
2 lmhmkerlss.z 0 ˙ = 0 T
3 lmhmkerlss.u U = LSubSp S
4 lmhmlmod2 F S LMHom T T LMod
5 eqid LSubSp T = LSubSp T
6 2 5 lsssn0 T LMod 0 ˙ LSubSp T
7 4 6 syl F S LMHom T 0 ˙ LSubSp T
8 3 5 lmhmpreima F S LMHom T 0 ˙ LSubSp T F -1 0 ˙ U
9 7 8 mpdan F S LMHom T F -1 0 ˙ U
10 1 9 eqeltrid F S LMHom T K U