Metamath Proof Explorer


Theorem lmhmlem

Description: Non-quantified consequences of a left module homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlem.k K = Scalar S
lmhmlem.l L = Scalar T
Assertion lmhmlem F S LMHom T S LMod T LMod F S GrpHom T L = K

Proof

Step Hyp Ref Expression
1 lmhmlem.k K = Scalar S
2 lmhmlem.l L = Scalar T
3 eqid Base K = Base K
4 eqid Base S = Base S
5 eqid S = S
6 eqid T = T
7 1 2 3 4 5 6 islmhm F S LMHom T S LMod T LMod F S GrpHom T L = K a Base K b Base S F a S b = a T F b
8 3simpa F S GrpHom T L = K a Base K b Base S F a S b = a T F b F S GrpHom T L = K
9 8 anim2i S LMod T LMod F S GrpHom T L = K a Base K b Base S F a S b = a T F b S LMod T LMod F S GrpHom T L = K
10 7 9 sylbi F S LMHom T S LMod T LMod F S GrpHom T L = K