Metamath Proof Explorer


Theorem lmhmlmod2

Description: A homomorphism of left modules has a left module as codomain. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion lmhmlmod2 F S LMHom T T LMod

Proof

Step Hyp Ref Expression
1 eqid Scalar S = Scalar S
2 eqid Scalar T = Scalar T
3 1 2 lmhmlem F S LMHom T S LMod T LMod F S GrpHom T Scalar T = Scalar S
4 3 simplrd F S LMHom T T LMod