Metamath Proof Explorer


Theorem lmhmlsp

Description: Homomorphisms preserve spans. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmlsp.v V = Base S
lmhmlsp.k K = LSpan S
lmhmlsp.l L = LSpan T
Assertion lmhmlsp F S LMHom T U V F K U = L F U

Proof

Step Hyp Ref Expression
1 lmhmlsp.v V = Base S
2 lmhmlsp.k K = LSpan S
3 lmhmlsp.l L = LSpan T
4 eqid Base T = Base T
5 1 4 lmhmf F S LMHom T F : V Base T
6 5 adantr F S LMHom T U V F : V Base T
7 6 ffund F S LMHom T U V Fun F
8 lmhmlmod1 F S LMHom T S LMod
9 8 adantr F S LMHom T U V S LMod
10 lmhmlmod2 F S LMHom T T LMod
11 10 adantr F S LMHom T U V T LMod
12 imassrn F U ran F
13 6 frnd F S LMHom T U V ran F Base T
14 12 13 sstrid F S LMHom T U V F U Base T
15 eqid LSubSp T = LSubSp T
16 4 15 3 lspcl T LMod F U Base T L F U LSubSp T
17 11 14 16 syl2anc F S LMHom T U V L F U LSubSp T
18 eqid LSubSp S = LSubSp S
19 18 15 lmhmpreima F S LMHom T L F U LSubSp T F -1 L F U LSubSp S
20 17 19 syldan F S LMHom T U V F -1 L F U LSubSp S
21 incom dom F U = U dom F
22 simpr F S LMHom T U V U V
23 6 fdmd F S LMHom T U V dom F = V
24 22 23 sseqtrrd F S LMHom T U V U dom F
25 df-ss U dom F U dom F = U
26 24 25 sylib F S LMHom T U V U dom F = U
27 21 26 eqtr2id F S LMHom T U V U = dom F U
28 dminss dom F U F -1 F U
29 27 28 eqsstrdi F S LMHom T U V U F -1 F U
30 4 3 lspssid T LMod F U Base T F U L F U
31 11 14 30 syl2anc F S LMHom T U V F U L F U
32 imass2 F U L F U F -1 F U F -1 L F U
33 31 32 syl F S LMHom T U V F -1 F U F -1 L F U
34 29 33 sstrd F S LMHom T U V U F -1 L F U
35 18 2 lspssp S LMod F -1 L F U LSubSp S U F -1 L F U K U F -1 L F U
36 9 20 34 35 syl3anc F S LMHom T U V K U F -1 L F U
37 funimass2 Fun F K U F -1 L F U F K U L F U
38 7 36 37 syl2anc F S LMHom T U V F K U L F U
39 1 18 2 lspcl S LMod U V K U LSubSp S
40 9 22 39 syl2anc F S LMHom T U V K U LSubSp S
41 18 15 lmhmima F S LMHom T K U LSubSp S F K U LSubSp T
42 40 41 syldan F S LMHom T U V F K U LSubSp T
43 1 2 lspssid S LMod U V U K U
44 9 22 43 syl2anc F S LMHom T U V U K U
45 imass2 U K U F U F K U
46 44 45 syl F S LMHom T U V F U F K U
47 15 3 lspssp T LMod F K U LSubSp T F U F K U L F U F K U
48 11 42 46 47 syl3anc F S LMHom T U V L F U F K U
49 38 48 eqssd F S LMHom T U V F K U = L F U