Metamath Proof Explorer


Theorem lmhmplusg

Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis lmhmplusg.p + ˙ = + N
Assertion lmhmplusg F M LMHom N G M LMHom N F + ˙ f G M LMHom N

Proof

Step Hyp Ref Expression
1 lmhmplusg.p + ˙ = + N
2 eqid Base M = Base M
3 eqid M = M
4 eqid N = N
5 eqid Scalar M = Scalar M
6 eqid Scalar N = Scalar N
7 eqid Base Scalar M = Base Scalar M
8 lmhmlmod1 F M LMHom N M LMod
9 8 adantr F M LMHom N G M LMHom N M LMod
10 lmhmlmod2 F M LMHom N N LMod
11 10 adantr F M LMHom N G M LMHom N N LMod
12 5 6 lmhmsca F M LMHom N Scalar N = Scalar M
13 12 adantr F M LMHom N G M LMHom N Scalar N = Scalar M
14 lmodabl N LMod N Abel
15 11 14 syl F M LMHom N G M LMHom N N Abel
16 lmghm F M LMHom N F M GrpHom N
17 16 adantr F M LMHom N G M LMHom N F M GrpHom N
18 lmghm G M LMHom N G M GrpHom N
19 18 adantl F M LMHom N G M LMHom N G M GrpHom N
20 1 ghmplusg N Abel F M GrpHom N G M GrpHom N F + ˙ f G M GrpHom N
21 15 17 19 20 syl3anc F M LMHom N G M LMHom N F + ˙ f G M GrpHom N
22 simpll F M LMHom N G M LMHom N x Base Scalar M y Base M F M LMHom N
23 simprl F M LMHom N G M LMHom N x Base Scalar M y Base M x Base Scalar M
24 simprr F M LMHom N G M LMHom N x Base Scalar M y Base M y Base M
25 5 7 2 3 4 lmhmlin F M LMHom N x Base Scalar M y Base M F x M y = x N F y
26 22 23 24 25 syl3anc F M LMHom N G M LMHom N x Base Scalar M y Base M F x M y = x N F y
27 simplr F M LMHom N G M LMHom N x Base Scalar M y Base M G M LMHom N
28 5 7 2 3 4 lmhmlin G M LMHom N x Base Scalar M y Base M G x M y = x N G y
29 27 23 24 28 syl3anc F M LMHom N G M LMHom N x Base Scalar M y Base M G x M y = x N G y
30 26 29 oveq12d F M LMHom N G M LMHom N x Base Scalar M y Base M F x M y + ˙ G x M y = x N F y + ˙ x N G y
31 10 ad2antrr F M LMHom N G M LMHom N x Base Scalar M y Base M N LMod
32 12 fveq2d F M LMHom N Base Scalar N = Base Scalar M
33 32 ad2antrr F M LMHom N G M LMHom N x Base Scalar M y Base M Base Scalar N = Base Scalar M
34 23 33 eleqtrrd F M LMHom N G M LMHom N x Base Scalar M y Base M x Base Scalar N
35 eqid Base N = Base N
36 2 35 lmhmf F M LMHom N F : Base M Base N
37 36 ad2antrr F M LMHom N G M LMHom N x Base Scalar M y Base M F : Base M Base N
38 37 24 ffvelrnd F M LMHom N G M LMHom N x Base Scalar M y Base M F y Base N
39 2 35 lmhmf G M LMHom N G : Base M Base N
40 39 ad2antlr F M LMHom N G M LMHom N x Base Scalar M y Base M G : Base M Base N
41 40 24 ffvelrnd F M LMHom N G M LMHom N x Base Scalar M y Base M G y Base N
42 eqid Base Scalar N = Base Scalar N
43 35 1 6 4 42 lmodvsdi N LMod x Base Scalar N F y Base N G y Base N x N F y + ˙ G y = x N F y + ˙ x N G y
44 31 34 38 41 43 syl13anc F M LMHom N G M LMHom N x Base Scalar M y Base M x N F y + ˙ G y = x N F y + ˙ x N G y
45 30 44 eqtr4d F M LMHom N G M LMHom N x Base Scalar M y Base M F x M y + ˙ G x M y = x N F y + ˙ G y
46 37 ffnd F M LMHom N G M LMHom N x Base Scalar M y Base M F Fn Base M
47 40 ffnd F M LMHom N G M LMHom N x Base Scalar M y Base M G Fn Base M
48 fvexd F M LMHom N G M LMHom N x Base Scalar M y Base M Base M V
49 8 ad2antrr F M LMHom N G M LMHom N x Base Scalar M y Base M M LMod
50 2 5 3 7 lmodvscl M LMod x Base Scalar M y Base M x M y Base M
51 49 23 24 50 syl3anc F M LMHom N G M LMHom N x Base Scalar M y Base M x M y Base M
52 fnfvof F Fn Base M G Fn Base M Base M V x M y Base M F + ˙ f G x M y = F x M y + ˙ G x M y
53 46 47 48 51 52 syl22anc F M LMHom N G M LMHom N x Base Scalar M y Base M F + ˙ f G x M y = F x M y + ˙ G x M y
54 fnfvof F Fn Base M G Fn Base M Base M V y Base M F + ˙ f G y = F y + ˙ G y
55 46 47 48 24 54 syl22anc F M LMHom N G M LMHom N x Base Scalar M y Base M F + ˙ f G y = F y + ˙ G y
56 55 oveq2d F M LMHom N G M LMHom N x Base Scalar M y Base M x N F + ˙ f G y = x N F y + ˙ G y
57 45 53 56 3eqtr4d F M LMHom N G M LMHom N x Base Scalar M y Base M F + ˙ f G x M y = x N F + ˙ f G y
58 2 3 4 5 6 7 9 11 13 21 57 islmhmd F M LMHom N G M LMHom N F + ˙ f G M LMHom N