Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmima.x |
|
2 |
|
lmhmima.y |
|
3 |
|
lmghm |
|
4 |
|
lmhmlmod2 |
|
5 |
2
|
lsssubg |
|
6 |
4 5
|
sylan |
|
7 |
|
ghmpreima |
|
8 |
3 6 7
|
syl2an2r |
|
9 |
|
lmhmlmod1 |
|
10 |
9
|
ad2antrr |
|
11 |
|
simprl |
|
12 |
|
cnvimass |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
lmhmf |
|
16 |
15
|
adantr |
|
17 |
12 16
|
fssdm |
|
18 |
17
|
sselda |
|
19 |
18
|
adantrl |
|
20 |
|
eqid |
|
21 |
|
eqid |
|
22 |
|
eqid |
|
23 |
13 20 21 22
|
lmodvscl |
|
24 |
10 11 19 23
|
syl3anc |
|
25 |
|
simpll |
|
26 |
|
eqid |
|
27 |
20 22 13 21 26
|
lmhmlin |
|
28 |
25 11 19 27
|
syl3anc |
|
29 |
4
|
ad2antrr |
|
30 |
|
simplr |
|
31 |
|
eqid |
|
32 |
20 31
|
lmhmsca |
|
33 |
32
|
adantr |
|
34 |
33
|
fveq2d |
|
35 |
34
|
eleq2d |
|
36 |
35
|
biimpar |
|
37 |
36
|
adantrr |
|
38 |
16
|
ffund |
|
39 |
|
simprr |
|
40 |
|
fvimacnvi |
|
41 |
38 39 40
|
syl2an2r |
|
42 |
|
eqid |
|
43 |
31 26 42 2
|
lssvscl |
|
44 |
29 30 37 41 43
|
syl22anc |
|
45 |
28 44
|
eqeltrd |
|
46 |
|
ffn |
|
47 |
|
elpreima |
|
48 |
16 46 47
|
3syl |
|
49 |
48
|
adantr |
|
50 |
24 45 49
|
mpbir2and |
|
51 |
50
|
ralrimivva |
|
52 |
9
|
adantr |
|
53 |
20 22 13 21 1
|
islss4 |
|
54 |
52 53
|
syl |
|
55 |
8 51 54
|
mpbir2and |
|