Metamath Proof Explorer


Theorem lmhmpreima

Description: The inverse image of a subspace under a homomorphism. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Hypotheses lmhmima.x X = LSubSp S
lmhmima.y Y = LSubSp T
Assertion lmhmpreima F S LMHom T U Y F -1 U X

Proof

Step Hyp Ref Expression
1 lmhmima.x X = LSubSp S
2 lmhmima.y Y = LSubSp T
3 lmghm F S LMHom T F S GrpHom T
4 lmhmlmod2 F S LMHom T T LMod
5 2 lsssubg T LMod U Y U SubGrp T
6 4 5 sylan F S LMHom T U Y U SubGrp T
7 ghmpreima F S GrpHom T U SubGrp T F -1 U SubGrp S
8 3 6 7 syl2an2r F S LMHom T U Y F -1 U SubGrp S
9 lmhmlmod1 F S LMHom T S LMod
10 9 ad2antrr F S LMHom T U Y a Base Scalar S b F -1 U S LMod
11 simprl F S LMHom T U Y a Base Scalar S b F -1 U a Base Scalar S
12 cnvimass F -1 U dom F
13 eqid Base S = Base S
14 eqid Base T = Base T
15 13 14 lmhmf F S LMHom T F : Base S Base T
16 15 adantr F S LMHom T U Y F : Base S Base T
17 12 16 fssdm F S LMHom T U Y F -1 U Base S
18 17 sselda F S LMHom T U Y b F -1 U b Base S
19 18 adantrl F S LMHom T U Y a Base Scalar S b F -1 U b Base S
20 eqid Scalar S = Scalar S
21 eqid S = S
22 eqid Base Scalar S = Base Scalar S
23 13 20 21 22 lmodvscl S LMod a Base Scalar S b Base S a S b Base S
24 10 11 19 23 syl3anc F S LMHom T U Y a Base Scalar S b F -1 U a S b Base S
25 simpll F S LMHom T U Y a Base Scalar S b F -1 U F S LMHom T
26 eqid T = T
27 20 22 13 21 26 lmhmlin F S LMHom T a Base Scalar S b Base S F a S b = a T F b
28 25 11 19 27 syl3anc F S LMHom T U Y a Base Scalar S b F -1 U F a S b = a T F b
29 4 ad2antrr F S LMHom T U Y a Base Scalar S b F -1 U T LMod
30 simplr F S LMHom T U Y a Base Scalar S b F -1 U U Y
31 eqid Scalar T = Scalar T
32 20 31 lmhmsca F S LMHom T Scalar T = Scalar S
33 32 adantr F S LMHom T U Y Scalar T = Scalar S
34 33 fveq2d F S LMHom T U Y Base Scalar T = Base Scalar S
35 34 eleq2d F S LMHom T U Y a Base Scalar T a Base Scalar S
36 35 biimpar F S LMHom T U Y a Base Scalar S a Base Scalar T
37 36 adantrr F S LMHom T U Y a Base Scalar S b F -1 U a Base Scalar T
38 16 ffund F S LMHom T U Y Fun F
39 simprr F S LMHom T U Y a Base Scalar S b F -1 U b F -1 U
40 fvimacnvi Fun F b F -1 U F b U
41 38 39 40 syl2an2r F S LMHom T U Y a Base Scalar S b F -1 U F b U
42 eqid Base Scalar T = Base Scalar T
43 31 26 42 2 lssvscl T LMod U Y a Base Scalar T F b U a T F b U
44 29 30 37 41 43 syl22anc F S LMHom T U Y a Base Scalar S b F -1 U a T F b U
45 28 44 eqeltrd F S LMHom T U Y a Base Scalar S b F -1 U F a S b U
46 ffn F : Base S Base T F Fn Base S
47 elpreima F Fn Base S a S b F -1 U a S b Base S F a S b U
48 16 46 47 3syl F S LMHom T U Y a S b F -1 U a S b Base S F a S b U
49 48 adantr F S LMHom T U Y a Base Scalar S b F -1 U a S b F -1 U a S b Base S F a S b U
50 24 45 49 mpbir2and F S LMHom T U Y a Base Scalar S b F -1 U a S b F -1 U
51 50 ralrimivva F S LMHom T U Y a Base Scalar S b F -1 U a S b F -1 U
52 9 adantr F S LMHom T U Y S LMod
53 20 22 13 21 1 islss4 S LMod F -1 U X F -1 U SubGrp S a Base Scalar S b F -1 U a S b F -1 U
54 52 53 syl F S LMHom T U Y F -1 U X F -1 U SubGrp S a Base Scalar S b F -1 U a S b F -1 U
55 8 51 54 mpbir2and F S LMHom T U Y F -1 U X