Metamath Proof Explorer


Theorem lmhmpropd

Description: Module homomorphism depends only on the module attributes of structures. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses lmhmpropd.a φ B = Base J
lmhmpropd.b φ C = Base K
lmhmpropd.c φ B = Base L
lmhmpropd.d φ C = Base M
lmhmpropd.1 φ F = Scalar J
lmhmpropd.2 φ G = Scalar K
lmhmpropd.3 φ F = Scalar L
lmhmpropd.4 φ G = Scalar M
lmhmpropd.p P = Base F
lmhmpropd.q Q = Base G
lmhmpropd.e φ x B y B x + J y = x + L y
lmhmpropd.f φ x C y C x + K y = x + M y
lmhmpropd.g φ x P y B x J y = x L y
lmhmpropd.h φ x Q y C x K y = x M y
Assertion lmhmpropd φ J LMHom K = L LMHom M

Proof

Step Hyp Ref Expression
1 lmhmpropd.a φ B = Base J
2 lmhmpropd.b φ C = Base K
3 lmhmpropd.c φ B = Base L
4 lmhmpropd.d φ C = Base M
5 lmhmpropd.1 φ F = Scalar J
6 lmhmpropd.2 φ G = Scalar K
7 lmhmpropd.3 φ F = Scalar L
8 lmhmpropd.4 φ G = Scalar M
9 lmhmpropd.p P = Base F
10 lmhmpropd.q Q = Base G
11 lmhmpropd.e φ x B y B x + J y = x + L y
12 lmhmpropd.f φ x C y C x + K y = x + M y
13 lmhmpropd.g φ x P y B x J y = x L y
14 lmhmpropd.h φ x Q y C x K y = x M y
15 1 3 11 5 7 9 13 lmodpropd φ J LMod L LMod
16 2 4 12 6 8 10 14 lmodpropd φ K LMod M LMod
17 15 16 anbi12d φ J LMod K LMod L LMod M LMod
18 13 oveqrspc2v φ z P w B z J w = z L w
19 18 adantlr φ f J GrpHom K G = F z P w B z J w = z L w
20 19 fveq2d φ f J GrpHom K G = F z P w B f z J w = f z L w
21 simpll φ f J GrpHom K G = F z P w B φ
22 simprl φ f J GrpHom K G = F z P w B z P
23 simplrr φ f J GrpHom K G = F z P w B G = F
24 23 fveq2d φ f J GrpHom K G = F z P w B Base G = Base F
25 24 10 9 3eqtr4g φ f J GrpHom K G = F z P w B Q = P
26 22 25 eleqtrrd φ f J GrpHom K G = F z P w B z Q
27 simplrl φ f J GrpHom K G = F z P w B f J GrpHom K
28 eqid Base J = Base J
29 eqid Base K = Base K
30 28 29 ghmf f J GrpHom K f : Base J Base K
31 27 30 syl φ f J GrpHom K G = F z P w B f : Base J Base K
32 simprr φ f J GrpHom K G = F z P w B w B
33 21 1 syl φ f J GrpHom K G = F z P w B B = Base J
34 32 33 eleqtrd φ f J GrpHom K G = F z P w B w Base J
35 31 34 ffvelrnd φ f J GrpHom K G = F z P w B f w Base K
36 21 2 syl φ f J GrpHom K G = F z P w B C = Base K
37 35 36 eleqtrrd φ f J GrpHom K G = F z P w B f w C
38 14 oveqrspc2v φ z Q f w C z K f w = z M f w
39 21 26 37 38 syl12anc φ f J GrpHom K G = F z P w B z K f w = z M f w
40 20 39 eqeq12d φ f J GrpHom K G = F z P w B f z J w = z K f w f z L w = z M f w
41 40 2ralbidva φ f J GrpHom K G = F z P w B f z J w = z K f w z P w B f z L w = z M f w
42 41 pm5.32da φ f J GrpHom K G = F z P w B f z J w = z K f w f J GrpHom K G = F z P w B f z L w = z M f w
43 df-3an f J GrpHom K G = F z P w B f z J w = z K f w f J GrpHom K G = F z P w B f z J w = z K f w
44 df-3an f J GrpHom K G = F z P w B f z L w = z M f w f J GrpHom K G = F z P w B f z L w = z M f w
45 42 43 44 3bitr4g φ f J GrpHom K G = F z P w B f z J w = z K f w f J GrpHom K G = F z P w B f z L w = z M f w
46 6 5 eqeq12d φ G = F Scalar K = Scalar J
47 5 fveq2d φ Base F = Base Scalar J
48 9 47 eqtrid φ P = Base Scalar J
49 1 raleqdv φ w B f z J w = z K f w w Base J f z J w = z K f w
50 48 49 raleqbidv φ z P w B f z J w = z K f w z Base Scalar J w Base J f z J w = z K f w
51 46 50 3anbi23d φ f J GrpHom K G = F z P w B f z J w = z K f w f J GrpHom K Scalar K = Scalar J z Base Scalar J w Base J f z J w = z K f w
52 1 2 3 4 11 12 ghmpropd φ J GrpHom K = L GrpHom M
53 52 eleq2d φ f J GrpHom K f L GrpHom M
54 8 7 eqeq12d φ G = F Scalar M = Scalar L
55 7 fveq2d φ Base F = Base Scalar L
56 9 55 eqtrid φ P = Base Scalar L
57 3 raleqdv φ w B f z L w = z M f w w Base L f z L w = z M f w
58 56 57 raleqbidv φ z P w B f z L w = z M f w z Base Scalar L w Base L f z L w = z M f w
59 53 54 58 3anbi123d φ f J GrpHom K G = F z P w B f z L w = z M f w f L GrpHom M Scalar M = Scalar L z Base Scalar L w Base L f z L w = z M f w
60 45 51 59 3bitr3d φ f J GrpHom K Scalar K = Scalar J z Base Scalar J w Base J f z J w = z K f w f L GrpHom M Scalar M = Scalar L z Base Scalar L w Base L f z L w = z M f w
61 17 60 anbi12d φ J LMod K LMod f J GrpHom K Scalar K = Scalar J z Base Scalar J w Base J f z J w = z K f w L LMod M LMod f L GrpHom M Scalar M = Scalar L z Base Scalar L w Base L f z L w = z M f w
62 eqid Scalar J = Scalar J
63 eqid Scalar K = Scalar K
64 eqid Base Scalar J = Base Scalar J
65 eqid J = J
66 eqid K = K
67 62 63 64 28 65 66 islmhm f J LMHom K J LMod K LMod f J GrpHom K Scalar K = Scalar J z Base Scalar J w Base J f z J w = z K f w
68 eqid Scalar L = Scalar L
69 eqid Scalar M = Scalar M
70 eqid Base Scalar L = Base Scalar L
71 eqid Base L = Base L
72 eqid L = L
73 eqid M = M
74 68 69 70 71 72 73 islmhm f L LMHom M L LMod M LMod f L GrpHom M Scalar M = Scalar L z Base Scalar L w Base L f z L w = z M f w
75 61 67 74 3bitr4g φ f J LMHom K f L LMHom M
76 75 eqrdv φ J LMHom K = L LMHom M