| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmhmpropd.a |  | 
						
							| 2 |  | lmhmpropd.b |  | 
						
							| 3 |  | lmhmpropd.c |  | 
						
							| 4 |  | lmhmpropd.d |  | 
						
							| 5 |  | lmhmpropd.1 |  | 
						
							| 6 |  | lmhmpropd.2 |  | 
						
							| 7 |  | lmhmpropd.3 |  | 
						
							| 8 |  | lmhmpropd.4 |  | 
						
							| 9 |  | lmhmpropd.p |  | 
						
							| 10 |  | lmhmpropd.q |  | 
						
							| 11 |  | lmhmpropd.e |  | 
						
							| 12 |  | lmhmpropd.f |  | 
						
							| 13 |  | lmhmpropd.g |  | 
						
							| 14 |  | lmhmpropd.h |  | 
						
							| 15 | 1 3 11 5 7 9 13 | lmodpropd |  | 
						
							| 16 | 2 4 12 6 8 10 14 | lmodpropd |  | 
						
							| 17 | 15 16 | anbi12d |  | 
						
							| 18 | 13 | oveqrspc2v |  | 
						
							| 19 | 18 | adantlr |  | 
						
							| 20 | 19 | fveq2d |  | 
						
							| 21 |  | simpll |  | 
						
							| 22 |  | simprl |  | 
						
							| 23 |  | simplrr |  | 
						
							| 24 | 23 | fveq2d |  | 
						
							| 25 | 24 10 9 | 3eqtr4g |  | 
						
							| 26 | 22 25 | eleqtrrd |  | 
						
							| 27 |  | simplrl |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | eqid |  | 
						
							| 30 | 28 29 | ghmf |  | 
						
							| 31 | 27 30 | syl |  | 
						
							| 32 |  | simprr |  | 
						
							| 33 | 21 1 | syl |  | 
						
							| 34 | 32 33 | eleqtrd |  | 
						
							| 35 | 31 34 | ffvelcdmd |  | 
						
							| 36 | 21 2 | syl |  | 
						
							| 37 | 35 36 | eleqtrrd |  | 
						
							| 38 | 14 | oveqrspc2v |  | 
						
							| 39 | 21 26 37 38 | syl12anc |  | 
						
							| 40 | 20 39 | eqeq12d |  | 
						
							| 41 | 40 | 2ralbidva |  | 
						
							| 42 | 41 | pm5.32da |  | 
						
							| 43 |  | df-3an |  | 
						
							| 44 |  | df-3an |  | 
						
							| 45 | 42 43 44 | 3bitr4g |  | 
						
							| 46 | 6 5 | eqeq12d |  | 
						
							| 47 | 5 | fveq2d |  | 
						
							| 48 | 9 47 | eqtrid |  | 
						
							| 49 | 1 | raleqdv |  | 
						
							| 50 | 48 49 | raleqbidv |  | 
						
							| 51 | 46 50 | 3anbi23d |  | 
						
							| 52 | 1 2 3 4 11 12 | ghmpropd |  | 
						
							| 53 | 52 | eleq2d |  | 
						
							| 54 | 8 7 | eqeq12d |  | 
						
							| 55 | 7 | fveq2d |  | 
						
							| 56 | 9 55 | eqtrid |  | 
						
							| 57 | 3 | raleqdv |  | 
						
							| 58 | 56 57 | raleqbidv |  | 
						
							| 59 | 53 54 58 | 3anbi123d |  | 
						
							| 60 | 45 51 59 | 3bitr3d |  | 
						
							| 61 | 17 60 | anbi12d |  | 
						
							| 62 |  | eqid |  | 
						
							| 63 |  | eqid |  | 
						
							| 64 |  | eqid |  | 
						
							| 65 |  | eqid |  | 
						
							| 66 |  | eqid |  | 
						
							| 67 | 62 63 64 28 65 66 | islmhm |  | 
						
							| 68 |  | eqid |  | 
						
							| 69 |  | eqid |  | 
						
							| 70 |  | eqid |  | 
						
							| 71 |  | eqid |  | 
						
							| 72 |  | eqid |  | 
						
							| 73 |  | eqid |  | 
						
							| 74 | 68 69 70 71 72 73 | islmhm |  | 
						
							| 75 | 61 67 74 | 3bitr4g |  | 
						
							| 76 | 75 | eqrdv |  |