Metamath Proof Explorer


Theorem lmhmqusker

Description: A surjective module homomorphism F from G to H induces an isomorphism J from Q to H , where Q is the factor group of G by F 's kernel K . (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses lmhmqusker.1 0 ˙ = 0 H
lmhmqusker.f φ F G LMHom H
lmhmqusker.k K = F -1 0 ˙
lmhmqusker.q Q = G / 𝑠 G ~ QG K
lmhmqusker.s φ ran F = Base H
lmhmqusker.j J = q Base Q F q
Assertion lmhmqusker φ J Q LMIso H

Proof

Step Hyp Ref Expression
1 lmhmqusker.1 0 ˙ = 0 H
2 lmhmqusker.f φ F G LMHom H
3 lmhmqusker.k K = F -1 0 ˙
4 lmhmqusker.q Q = G / 𝑠 G ~ QG K
5 lmhmqusker.s φ ran F = Base H
6 lmhmqusker.j J = q Base Q F q
7 eqid Base Q = Base Q
8 eqid Q = Q
9 eqid H = H
10 eqid Scalar Q = Scalar Q
11 eqid Scalar H = Scalar H
12 eqid Base Scalar Q = Base Scalar Q
13 eqid Base G = Base G
14 lmhmlmod1 F G LMHom H G LMod
15 2 14 syl φ G LMod
16 eqid LSubSp G = LSubSp G
17 3 1 16 lmhmkerlss F G LMHom H K LSubSp G
18 2 17 syl φ K LSubSp G
19 4 13 15 18 quslmod φ Q LMod
20 lmhmlmod2 F G LMHom H H LMod
21 2 20 syl φ H LMod
22 eqid Scalar G = Scalar G
23 22 11 lmhmsca F G LMHom H Scalar H = Scalar G
24 2 23 syl φ Scalar H = Scalar G
25 4 a1i φ Q = G / 𝑠 G ~ QG K
26 13 a1i φ Base G = Base G
27 ovexd φ G ~ QG K V
28 25 26 27 15 22 quss φ Scalar G = Scalar Q
29 24 28 eqtrd φ Scalar H = Scalar Q
30 lmghm F G LMHom H F G GrpHom H
31 2 30 syl φ F G GrpHom H
32 1 31 3 4 6 5 ghmqusker φ J Q GrpIso H
33 gimghm J Q GrpIso H J Q GrpHom H
34 32 33 syl φ J Q GrpHom H
35 1 ghmker F G GrpHom H F -1 0 ˙ NrmSGrp G
36 31 35 syl φ F -1 0 ˙ NrmSGrp G
37 3 36 eqeltrid φ K NrmSGrp G
38 nsgsubg K NrmSGrp G K SubGrp G
39 eqid G ~ QG K = G ~ QG K
40 13 39 eqger K SubGrp G G ~ QG K Er Base G
41 37 38 40 3syl φ G ~ QG K Er Base G
42 41 ad4antr φ k Base Scalar Q r Base Q x r J r = F x G ~ QG K Er Base G
43 simpllr φ k Base Scalar Q r Base Q x r J r = F x r Base Q
44 25 26 27 15 qusbas φ Base G / G ~ QG K = Base Q
45 44 ad4antr φ k Base Scalar Q r Base Q x r J r = F x Base G / G ~ QG K = Base Q
46 43 45 eleqtrrd φ k Base Scalar Q r Base Q x r J r = F x r Base G / G ~ QG K
47 simplr φ k Base Scalar Q r Base Q x r J r = F x x r
48 qsel G ~ QG K Er Base G r Base G / G ~ QG K x r r = x G ~ QG K
49 42 46 47 48 syl3anc φ k Base Scalar Q r Base Q x r J r = F x r = x G ~ QG K
50 49 oveq2d φ k Base Scalar Q r Base Q x r J r = F x k Q r = k Q x G ~ QG K
51 eqid Base Scalar G = Base Scalar G
52 eqid G = G
53 15 ad4antr φ k Base Scalar Q r Base Q x r J r = F x G LMod
54 18 ad4antr φ k Base Scalar Q r Base Q x r J r = F x K LSubSp G
55 simp-4r φ k Base Scalar Q r Base Q x r J r = F x k Base Scalar Q
56 28 fveq2d φ Base Scalar G = Base Scalar Q
57 56 ad4antr φ k Base Scalar Q r Base Q x r J r = F x Base Scalar G = Base Scalar Q
58 55 57 eleqtrrd φ k Base Scalar Q r Base Q x r J r = F x k Base Scalar G
59 41 qsss φ Base G / G ~ QG K 𝒫 Base G
60 44 59 eqsstrrd φ Base Q 𝒫 Base G
61 60 sselda φ r Base Q r 𝒫 Base G
62 61 elpwid φ r Base Q r Base G
63 62 ad5ant13 φ k Base Scalar Q r Base Q x r J r = F x r Base G
64 63 47 sseldd φ k Base Scalar Q r Base Q x r J r = F x x Base G
65 13 39 51 52 53 54 58 4 8 64 qusvsval φ k Base Scalar Q r Base Q x r J r = F x k Q x G ~ QG K = k G x G ~ QG K
66 50 65 eqtrd φ k Base Scalar Q r Base Q x r J r = F x k Q r = k G x G ~ QG K
67 66 fveq2d φ k Base Scalar Q r Base Q x r J r = F x J k Q r = J k G x G ~ QG K
68 31 ad4antr φ k Base Scalar Q r Base Q x r J r = F x F G GrpHom H
69 13 22 52 51 lmodvscl G LMod k Base Scalar G x Base G k G x Base G
70 53 58 64 69 syl3anc φ k Base Scalar Q r Base Q x r J r = F x k G x Base G
71 1 68 3 4 6 70 ghmquskerlem1 φ k Base Scalar Q r Base Q x r J r = F x J k G x G ~ QG K = F k G x
72 2 ad4antr φ k Base Scalar Q r Base Q x r J r = F x F G LMHom H
73 22 51 13 52 9 lmhmlin F G LMHom H k Base Scalar G x Base G F k G x = k H F x
74 72 58 64 73 syl3anc φ k Base Scalar Q r Base Q x r J r = F x F k G x = k H F x
75 67 71 74 3eqtrd φ k Base Scalar Q r Base Q x r J r = F x J k Q r = k H F x
76 simpr φ k Base Scalar Q r Base Q x r J r = F x J r = F x
77 76 oveq2d φ k Base Scalar Q r Base Q x r J r = F x k H J r = k H F x
78 75 77 eqtr4d φ k Base Scalar Q r Base Q x r J r = F x J k Q r = k H J r
79 31 ad2antrr φ k Base Scalar Q r Base Q F G GrpHom H
80 simpr φ k Base Scalar Q r Base Q r Base Q
81 1 79 3 4 6 80 ghmquskerlem2 φ k Base Scalar Q r Base Q x r J r = F x
82 78 81 r19.29a φ k Base Scalar Q r Base Q J k Q r = k H J r
83 82 anasss φ k Base Scalar Q r Base Q J k Q r = k H J r
84 7 8 9 10 11 12 19 21 29 34 83 islmhmd φ J Q LMHom H
85 eqid Base H = Base H
86 7 85 gimf1o J Q GrpIso H J : Base Q 1-1 onto Base H
87 32 86 syl φ J : Base Q 1-1 onto Base H
88 7 85 islmim J Q LMIso H J Q LMHom H J : Base Q 1-1 onto Base H
89 84 87 88 sylanbrc φ J Q LMIso H