Database
BASIC ALGEBRAIC STRUCTURES
Left modules
Homomorphisms and isomorphisms of left modules
lmhmrnlss
Next ⟩
lmhmkerlss
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmhmrnlss
Description:
The range of a homomorphism is a submodule.
(Contributed by
Stefan O'Rear
, 1-Jan-2015)
Ref
Expression
Assertion
lmhmrnlss
⊢
F
∈
S
LMHom
T
→
ran
⁡
F
∈
LSubSp
⁡
T
Proof
Step
Hyp
Ref
Expression
1
eqid
⊢
Base
S
=
Base
S
2
eqid
⊢
Base
T
=
Base
T
3
1
2
lmhmf
⊢
F
∈
S
LMHom
T
→
F
:
Base
S
⟶
Base
T
4
ffn
⊢
F
:
Base
S
⟶
Base
T
→
F
Fn
Base
S
5
fnima
⊢
F
Fn
Base
S
→
F
Base
S
=
ran
⁡
F
6
3
4
5
3syl
⊢
F
∈
S
LMHom
T
→
F
Base
S
=
ran
⁡
F
7
lmhmlmod1
⊢
F
∈
S
LMHom
T
→
S
∈
LMod
8
eqid
⊢
LSubSp
⁡
S
=
LSubSp
⁡
S
9
1
8
lss1
⊢
S
∈
LMod
→
Base
S
∈
LSubSp
⁡
S
10
7
9
syl
⊢
F
∈
S
LMHom
T
→
Base
S
∈
LSubSp
⁡
S
11
eqid
⊢
LSubSp
⁡
T
=
LSubSp
⁡
T
12
8
11
lmhmima
⊢
F
∈
S
LMHom
T
∧
Base
S
∈
LSubSp
⁡
S
→
F
Base
S
∈
LSubSp
⁡
T
13
10
12
mpdan
⊢
F
∈
S
LMHom
T
→
F
Base
S
∈
LSubSp
⁡
T
14
6
13
eqeltrrd
⊢
F
∈
S
LMHom
T
→
ran
⁡
F
∈
LSubSp
⁡
T