Metamath Proof Explorer


Theorem lmhmrnlss

Description: The range of a homomorphism is a submodule. (Contributed by Stefan O'Rear, 1-Jan-2015)

Ref Expression
Assertion lmhmrnlss F S LMHom T ran F LSubSp T

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 1 2 lmhmf F S LMHom T F : Base S Base T
4 ffn F : Base S Base T F Fn Base S
5 fnima F Fn Base S F Base S = ran F
6 3 4 5 3syl F S LMHom T F Base S = ran F
7 lmhmlmod1 F S LMHom T S LMod
8 eqid LSubSp S = LSubSp S
9 1 8 lss1 S LMod Base S LSubSp S
10 7 9 syl F S LMHom T Base S LSubSp S
11 eqid LSubSp T = LSubSp T
12 8 11 lmhmima F S LMHom T Base S LSubSp S F Base S LSubSp T
13 10 12 mpdan F S LMHom T F Base S LSubSp T
14 6 13 eqeltrrd F S LMHom T ran F LSubSp T