Step |
Hyp |
Ref |
Expression |
1 |
|
lmhmvsca.v |
|
2 |
|
lmhmvsca.s |
|
3 |
|
lmhmvsca.j |
|
4 |
|
lmhmvsca.k |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
|
lmhmlmod1 |
|
9 |
8
|
3ad2ant3 |
|
10 |
|
lmhmlmod2 |
|
11 |
10
|
3ad2ant3 |
|
12 |
6 3
|
lmhmsca |
|
13 |
12
|
3ad2ant3 |
|
14 |
1
|
fvexi |
|
15 |
14
|
a1i |
|
16 |
|
simpl2 |
|
17 |
|
eqid |
|
18 |
1 17
|
lmhmf |
|
19 |
18
|
3ad2ant3 |
|
20 |
19
|
ffvelrnda |
|
21 |
|
fconstmpt |
|
22 |
21
|
a1i |
|
23 |
19
|
feqmptd |
|
24 |
15 16 20 22 23
|
offval2 |
|
25 |
|
eqidd |
|
26 |
|
oveq2 |
|
27 |
20 23 25 26
|
fmptco |
|
28 |
24 27
|
eqtr4d |
|
29 |
|
simp2 |
|
30 |
17 3 2 4
|
lmodvsghm |
|
31 |
11 29 30
|
syl2anc |
|
32 |
|
lmghm |
|
33 |
32
|
3ad2ant3 |
|
34 |
|
ghmco |
|
35 |
31 33 34
|
syl2anc |
|
36 |
28 35
|
eqeltrd |
|
37 |
|
simpl1 |
|
38 |
|
simpl2 |
|
39 |
|
simprl |
|
40 |
13
|
fveq2d |
|
41 |
4 40
|
eqtrid |
|
42 |
41
|
adantr |
|
43 |
39 42
|
eleqtrrd |
|
44 |
|
eqid |
|
45 |
4 44
|
crngcom |
|
46 |
37 38 43 45
|
syl3anc |
|
47 |
46
|
oveq1d |
|
48 |
11
|
adantr |
|
49 |
19
|
adantr |
|
50 |
|
simprr |
|
51 |
49 50
|
ffvelrnd |
|
52 |
17 3 2 4 44
|
lmodvsass |
|
53 |
48 38 43 51 52
|
syl13anc |
|
54 |
17 3 2 4 44
|
lmodvsass |
|
55 |
48 43 38 51 54
|
syl13anc |
|
56 |
47 53 55
|
3eqtr3d |
|
57 |
1 6 5 7
|
lmodvscl |
|
58 |
57
|
3expb |
|
59 |
9 58
|
sylan |
|
60 |
14
|
a1i |
|
61 |
19
|
ffnd |
|
62 |
61
|
adantr |
|
63 |
6 7 1 5 2
|
lmhmlin |
|
64 |
63
|
3expb |
|
65 |
64
|
3ad2antl3 |
|
66 |
65
|
adantr |
|
67 |
60 38 62 66
|
ofc1 |
|
68 |
59 67
|
mpdan |
|
69 |
|
eqidd |
|
70 |
60 38 62 69
|
ofc1 |
|
71 |
50 70
|
mpdan |
|
72 |
71
|
oveq2d |
|
73 |
56 68 72
|
3eqtr4d |
|
74 |
1 5 2 6 3 7 9 11 13 36 73
|
islmhmd |
|