Metamath Proof Explorer


Theorem lmhmvsca

Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses lmhmvsca.v V = Base M
lmhmvsca.s · ˙ = N
lmhmvsca.j J = Scalar N
lmhmvsca.k K = Base J
Assertion lmhmvsca J CRing A K F M LMHom N V × A · ˙ f F M LMHom N

Proof

Step Hyp Ref Expression
1 lmhmvsca.v V = Base M
2 lmhmvsca.s · ˙ = N
3 lmhmvsca.j J = Scalar N
4 lmhmvsca.k K = Base J
5 eqid M = M
6 eqid Scalar M = Scalar M
7 eqid Base Scalar M = Base Scalar M
8 lmhmlmod1 F M LMHom N M LMod
9 8 3ad2ant3 J CRing A K F M LMHom N M LMod
10 lmhmlmod2 F M LMHom N N LMod
11 10 3ad2ant3 J CRing A K F M LMHom N N LMod
12 6 3 lmhmsca F M LMHom N J = Scalar M
13 12 3ad2ant3 J CRing A K F M LMHom N J = Scalar M
14 1 fvexi V V
15 14 a1i J CRing A K F M LMHom N V V
16 simpl2 J CRing A K F M LMHom N v V A K
17 eqid Base N = Base N
18 1 17 lmhmf F M LMHom N F : V Base N
19 18 3ad2ant3 J CRing A K F M LMHom N F : V Base N
20 19 ffvelrnda J CRing A K F M LMHom N v V F v Base N
21 fconstmpt V × A = v V A
22 21 a1i J CRing A K F M LMHom N V × A = v V A
23 19 feqmptd J CRing A K F M LMHom N F = v V F v
24 15 16 20 22 23 offval2 J CRing A K F M LMHom N V × A · ˙ f F = v V A · ˙ F v
25 eqidd J CRing A K F M LMHom N u Base N A · ˙ u = u Base N A · ˙ u
26 oveq2 u = F v A · ˙ u = A · ˙ F v
27 20 23 25 26 fmptco J CRing A K F M LMHom N u Base N A · ˙ u F = v V A · ˙ F v
28 24 27 eqtr4d J CRing A K F M LMHom N V × A · ˙ f F = u Base N A · ˙ u F
29 simp2 J CRing A K F M LMHom N A K
30 17 3 2 4 lmodvsghm N LMod A K u Base N A · ˙ u N GrpHom N
31 11 29 30 syl2anc J CRing A K F M LMHom N u Base N A · ˙ u N GrpHom N
32 lmghm F M LMHom N F M GrpHom N
33 32 3ad2ant3 J CRing A K F M LMHom N F M GrpHom N
34 ghmco u Base N A · ˙ u N GrpHom N F M GrpHom N u Base N A · ˙ u F M GrpHom N
35 31 33 34 syl2anc J CRing A K F M LMHom N u Base N A · ˙ u F M GrpHom N
36 28 35 eqeltrd J CRing A K F M LMHom N V × A · ˙ f F M GrpHom N
37 simpl1 J CRing A K F M LMHom N x Base Scalar M y V J CRing
38 simpl2 J CRing A K F M LMHom N x Base Scalar M y V A K
39 simprl J CRing A K F M LMHom N x Base Scalar M y V x Base Scalar M
40 13 fveq2d J CRing A K F M LMHom N Base J = Base Scalar M
41 4 40 eqtrid J CRing A K F M LMHom N K = Base Scalar M
42 41 adantr J CRing A K F M LMHom N x Base Scalar M y V K = Base Scalar M
43 39 42 eleqtrrd J CRing A K F M LMHom N x Base Scalar M y V x K
44 eqid J = J
45 4 44 crngcom J CRing A K x K A J x = x J A
46 37 38 43 45 syl3anc J CRing A K F M LMHom N x Base Scalar M y V A J x = x J A
47 46 oveq1d J CRing A K F M LMHom N x Base Scalar M y V A J x · ˙ F y = x J A · ˙ F y
48 11 adantr J CRing A K F M LMHom N x Base Scalar M y V N LMod
49 19 adantr J CRing A K F M LMHom N x Base Scalar M y V F : V Base N
50 simprr J CRing A K F M LMHom N x Base Scalar M y V y V
51 49 50 ffvelrnd J CRing A K F M LMHom N x Base Scalar M y V F y Base N
52 17 3 2 4 44 lmodvsass N LMod A K x K F y Base N A J x · ˙ F y = A · ˙ x · ˙ F y
53 48 38 43 51 52 syl13anc J CRing A K F M LMHom N x Base Scalar M y V A J x · ˙ F y = A · ˙ x · ˙ F y
54 17 3 2 4 44 lmodvsass N LMod x K A K F y Base N x J A · ˙ F y = x · ˙ A · ˙ F y
55 48 43 38 51 54 syl13anc J CRing A K F M LMHom N x Base Scalar M y V x J A · ˙ F y = x · ˙ A · ˙ F y
56 47 53 55 3eqtr3d J CRing A K F M LMHom N x Base Scalar M y V A · ˙ x · ˙ F y = x · ˙ A · ˙ F y
57 1 6 5 7 lmodvscl M LMod x Base Scalar M y V x M y V
58 57 3expb M LMod x Base Scalar M y V x M y V
59 9 58 sylan J CRing A K F M LMHom N x Base Scalar M y V x M y V
60 14 a1i J CRing A K F M LMHom N x Base Scalar M y V V V
61 19 ffnd J CRing A K F M LMHom N F Fn V
62 61 adantr J CRing A K F M LMHom N x Base Scalar M y V F Fn V
63 6 7 1 5 2 lmhmlin F M LMHom N x Base Scalar M y V F x M y = x · ˙ F y
64 63 3expb F M LMHom N x Base Scalar M y V F x M y = x · ˙ F y
65 64 3ad2antl3 J CRing A K F M LMHom N x Base Scalar M y V F x M y = x · ˙ F y
66 65 adantr J CRing A K F M LMHom N x Base Scalar M y V x M y V F x M y = x · ˙ F y
67 60 38 62 66 ofc1 J CRing A K F M LMHom N x Base Scalar M y V x M y V V × A · ˙ f F x M y = A · ˙ x · ˙ F y
68 59 67 mpdan J CRing A K F M LMHom N x Base Scalar M y V V × A · ˙ f F x M y = A · ˙ x · ˙ F y
69 eqidd J CRing A K F M LMHom N x Base Scalar M y V y V F y = F y
70 60 38 62 69 ofc1 J CRing A K F M LMHom N x Base Scalar M y V y V V × A · ˙ f F y = A · ˙ F y
71 50 70 mpdan J CRing A K F M LMHom N x Base Scalar M y V V × A · ˙ f F y = A · ˙ F y
72 71 oveq2d J CRing A K F M LMHom N x Base Scalar M y V x · ˙ V × A · ˙ f F y = x · ˙ A · ˙ F y
73 56 68 72 3eqtr4d J CRing A K F M LMHom N x Base Scalar M y V V × A · ˙ f F x M y = x · ˙ V × A · ˙ f F y
74 1 5 2 6 3 7 9 11 13 36 73 islmhmd J CRing A K F M LMHom N V × A · ˙ f F M LMHom N