Metamath Proof Explorer


Theorem lmicdim

Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Mar-2025)

Ref Expression
Hypotheses lmicdim.1 φ S 𝑚 T
lmicdim.2 φ S LVec
Assertion lmicdim φ dim S = dim T

Proof

Step Hyp Ref Expression
1 lmicdim.1 φ S 𝑚 T
2 lmicdim.2 φ S LVec
3 brlmic S 𝑚 T S LMIso T
4 1 3 sylib φ S LMIso T
5 n0 S LMIso T f f S LMIso T
6 4 5 sylib φ f f S LMIso T
7 simpr φ f S LMIso T f S LMIso T
8 2 adantr φ f S LMIso T S LVec
9 7 8 lmimdim φ f S LMIso T dim S = dim T
10 6 9 exlimddv φ dim S = dim T