Metamath Proof Explorer


Theorem lmicinv

Description: The mirroring line is an invariant. (Contributed by Thierry Arnoux, 8-Aug-2020)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmicl.1 φ A P
lmicinv.1 φ A D
Assertion lmicinv φ M A = A

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmicl.1 φ A P
10 lmicinv.1 φ A D
11 1 2 3 4 5 6 7 8 9 lmiinv φ M A = A A D
12 10 11 mpbird φ M A = A