Database
ELEMENTARY GEOMETRY
Tarskian Geometry
Midpoints and Line Mirroring
lmicinv
Next ⟩
lmimid
Metamath Proof Explorer
Ascii
Unicode
Theorem
lmicinv
Description:
The mirroring line is an invariant.
(Contributed by
Thierry Arnoux
, 8-Aug-2020)
Ref
Expression
Hypotheses
ismid.p
⊢
P
=
Base
G
ismid.d
⊢
-
˙
=
dist
⁡
G
ismid.i
⊢
I
=
Itv
⁡
G
ismid.g
⊢
φ
→
G
∈
𝒢
Tarski
ismid.1
⊢
φ
→
G
Dim
𝒢
≥
2
lmif.m
⊢
M
=
lInv
𝒢
⁡
G
⁡
D
lmif.l
⊢
L
=
Line
𝒢
⁡
G
lmif.d
⊢
φ
→
D
∈
ran
⁡
L
lmicl.1
⊢
φ
→
A
∈
P
lmicinv.1
⊢
φ
→
A
∈
D
Assertion
lmicinv
⊢
φ
→
M
⁡
A
=
A
Proof
Step
Hyp
Ref
Expression
1
ismid.p
⊢
P
=
Base
G
2
ismid.d
⊢
-
˙
=
dist
⁡
G
3
ismid.i
⊢
I
=
Itv
⁡
G
4
ismid.g
⊢
φ
→
G
∈
𝒢
Tarski
5
ismid.1
⊢
φ
→
G
Dim
𝒢
≥
2
6
lmif.m
⊢
M
=
lInv
𝒢
⁡
G
⁡
D
7
lmif.l
⊢
L
=
Line
𝒢
⁡
G
8
lmif.d
⊢
φ
→
D
∈
ran
⁡
L
9
lmicl.1
⊢
φ
→
A
∈
P
10
lmicinv.1
⊢
φ
→
A
∈
D
11
1
2
3
4
5
6
7
8
9
lmiinv
⊢
φ
→
M
⁡
A
=
A
↔
A
∈
D
12
10
11
mpbird
⊢
φ
→
M
⁡
A
=
A