Metamath Proof Explorer


Theorem lmiclcl

Description: Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015)

Ref Expression
Assertion lmiclcl R 𝑚 S R LMod

Proof

Step Hyp Ref Expression
1 brlmic R 𝑚 S R LMIso S
2 n0 R LMIso S f f R LMIso S
3 1 2 bitri R 𝑚 S f f R LMIso S
4 lmimlmhm f R LMIso S f R LMHom S
5 lmhmlmod1 f R LMHom S R LMod
6 4 5 syl f R LMIso S R LMod
7 6 exlimiv f f R LMIso S R LMod
8 3 7 sylbi R 𝑚 S R LMod