Description: The line mirroring function is an involution. Theorem 10.4 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismid.p | |
|
| ismid.d | |
||
| ismid.i | |
||
| ismid.g | |
||
| ismid.1 | |
||
| lmif.m | |
||
| lmif.l | |
||
| lmif.d | |
||
| lmicl.1 | |
||
| islmib.b | |
||
| lmicom.1 | |
||
| Assertion | lmicom | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismid.p | |
|
| 2 | ismid.d | |
|
| 3 | ismid.i | |
|
| 4 | ismid.g | |
|
| 5 | ismid.1 | |
|
| 6 | lmif.m | |
|
| 7 | lmif.l | |
|
| 8 | lmif.d | |
|
| 9 | lmicl.1 | |
|
| 10 | islmib.b | |
|
| 11 | lmicom.1 | |
|
| 12 | 1 2 3 4 5 9 10 | midcom | |
| 13 | 11 | eqcomd | |
| 14 | 1 2 3 4 5 6 7 8 9 10 | islmib | |
| 15 | 13 14 | mpbid | |
| 16 | 15 | simpld | |
| 17 | 12 16 | eqeltrrd | |
| 18 | 15 | simprd | |
| 19 | 18 | orcomd | |
| 20 | 19 | ord | |
| 21 | 4 | adantr | |
| 22 | 9 | adantr | |
| 23 | 10 | adantr | |
| 24 | simpr | |
|
| 25 | 24 | neqned | |
| 26 | 1 3 7 21 22 23 25 | tglinecom | |
| 27 | 26 | breq2d | |
| 28 | 27 | pm5.74da | |
| 29 | 20 28 | mpbid | |
| 30 | 29 | orrd | |
| 31 | 30 | orcomd | |
| 32 | eqcom | |
|
| 33 | 32 | orbi2i | |
| 34 | 31 33 | sylib | |
| 35 | 1 2 3 4 5 6 7 8 10 9 | islmib | |
| 36 | 17 34 35 | mpbir2and | |
| 37 | 36 | eqcomd | |