Metamath Proof Explorer


Theorem lmicqusker

Description: The image H of a module homomorphism F is isomorphic with the quotient module Q over F 's kernel K . This is part of what is sometimes called the first isomorphism theorem for modules. (Contributed by Thierry Arnoux, 10-Mar-2025)

Ref Expression
Hypotheses lmhmqusker.1 0 ˙ = 0 H
lmhmqusker.f φ F G LMHom H
lmhmqusker.k K = F -1 0 ˙
lmhmqusker.q Q = G / 𝑠 G ~ QG K
lmhmqusker.s φ ran F = Base H
Assertion lmicqusker φ Q 𝑚 H

Proof

Step Hyp Ref Expression
1 lmhmqusker.1 0 ˙ = 0 H
2 lmhmqusker.f φ F G LMHom H
3 lmhmqusker.k K = F -1 0 ˙
4 lmhmqusker.q Q = G / 𝑠 G ~ QG K
5 lmhmqusker.s φ ran F = Base H
6 imaeq2 p = q F p = F q
7 6 unieqd p = q F p = F q
8 7 cbvmptv p Base Q F p = q Base Q F q
9 1 2 3 4 5 8 lmhmqusker φ p Base Q F p Q LMIso H
10 brlmici p Base Q F p Q LMIso H Q 𝑚 H
11 9 10 syl φ Q 𝑚 H