Metamath Proof Explorer


Theorem lmicrcl

Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmicrcl R 𝑚 S S LMod

Proof

Step Hyp Ref Expression
1 brlmic R 𝑚 S R LMIso S
2 n0 R LMIso S f f R LMIso S
3 1 2 bitri R 𝑚 S f f R LMIso S
4 lmimlmhm f R LMIso S f R LMHom S
5 lmhmlmod2 f R LMHom S S LMod
6 4 5 syl f R LMIso S S LMod
7 6 exlimiv f f R LMIso S S LMod
8 3 7 sylbi R 𝑚 S S LMod