Metamath Proof Explorer


Theorem lmieq

Description: Equality deduction for line mirroring. Theorem 10.7 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmicl.1 φ A P
lmieq.c φ B P
lmieq.d φ M A = M B
Assertion lmieq φ A = B

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmicl.1 φ A P
10 lmieq.c φ B P
11 lmieq.d φ M A = M B
12 fveqeq2 b = A M b = M B M A = M B
13 fveqeq2 b = B M b = M B M B = M B
14 1 2 3 4 5 6 7 8 10 lmicl φ M B P
15 1 2 3 4 5 6 7 8 14 lmireu φ ∃! b P M b = M B
16 eqidd φ M B = M B
17 12 13 15 9 10 11 16 reu2eqd φ A = B