Metamath Proof Explorer


Theorem lmiinv

Description: The invariants of the line mirroring lie on the mirror line. Theorem 10.8 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmicl.1 φ A P
Assertion lmiinv φ M A = A A D

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmicl.1 φ A P
10 1 2 3 4 5 6 7 8 9 9 islmib φ A = M A A mid 𝒢 G A D D 𝒢 G A L A A = A
11 eqcom A = M A M A = A
12 11 a1i φ A = M A M A = A
13 eqidd φ A = A
14 13 olcd φ D 𝒢 G A L A A = A
15 14 biantrud φ A mid 𝒢 G A D A mid 𝒢 G A D D 𝒢 G A L A A = A
16 1 2 3 4 5 9 9 midid φ A mid 𝒢 G A = A
17 16 eleq1d φ A mid 𝒢 G A D A D
18 15 17 bitr3d φ A mid 𝒢 G A D D 𝒢 G A L A A = A A D
19 10 12 18 3bitr3d φ M A = A A D