Metamath Proof Explorer


Theorem lmiiso

Description: The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P=BaseG
ismid.d -˙=distG
ismid.i I=ItvG
ismid.g φG𝒢Tarski
ismid.1 φGDim𝒢2
lmif.m M=lInv𝒢GD
lmif.l L=Line𝒢G
lmif.d φDranL
lmiiso.1 φAP
lmiiso.2 φBP
Assertion lmiiso φMA-˙MB=A-˙B

Proof

Step Hyp Ref Expression
1 ismid.p P=BaseG
2 ismid.d -˙=distG
3 ismid.i I=ItvG
4 ismid.g φG𝒢Tarski
5 ismid.1 φGDim𝒢2
6 lmif.m M=lInv𝒢GD
7 lmif.l L=Line𝒢G
8 lmif.d φDranL
9 lmiiso.1 φAP
10 lmiiso.2 φBP
11 eqid pInv𝒢GAmid𝒢GMAmid𝒢GBmid𝒢GMB=pInv𝒢GAmid𝒢GMAmid𝒢GBmid𝒢GMB
12 eqid Amid𝒢GMAmid𝒢GBmid𝒢GMB=Amid𝒢GMAmid𝒢GBmid𝒢GMB
13 1 2 3 4 5 6 7 8 9 10 11 12 lmiisolem φMA-˙MB=A-˙B