Metamath Proof Explorer


Theorem lmiiso

Description: The line mirroring function is an isometry, i.e. it is conserves congruence. Because it is also a bijection, it is also a motion. Theorem 10.10 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmiiso.1 φ A P
lmiiso.2 φ B P
Assertion lmiiso φ M A - ˙ M B = A - ˙ B

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmiiso.1 φ A P
10 lmiiso.2 φ B P
11 eqid pInv 𝒢 G A mid 𝒢 G M A mid 𝒢 G B mid 𝒢 G M B = pInv 𝒢 G A mid 𝒢 G M A mid 𝒢 G B mid 𝒢 G M B
12 eqid A mid 𝒢 G M A mid 𝒢 G B mid 𝒢 G M B = A mid 𝒢 G M A mid 𝒢 G B mid 𝒢 G M B
13 1 2 3 4 5 6 7 8 9 10 11 12 lmiisolem φ M A - ˙ M B = A - ˙ B