Metamath Proof Explorer


Theorem lmimcnv

Description: The converse of a bijective module homomorphism is a bijective module homomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmimcnv F S LMIso T F -1 T LMIso S

Proof

Step Hyp Ref Expression
1 eqid Base S = Base S
2 eqid Base T = Base T
3 1 2 lmhmf F S LMHom T F : Base S Base T
4 frel F : Base S Base T Rel F
5 3 4 syl F S LMHom T Rel F
6 dfrel2 Rel F F -1 -1 = F
7 5 6 sylib F S LMHom T F -1 -1 = F
8 id F S LMHom T F S LMHom T
9 7 8 eqeltrd F S LMHom T F -1 -1 S LMHom T
10 9 anim1ci F S LMHom T F -1 T LMHom S F -1 T LMHom S F -1 -1 S LMHom T
11 islmim2 F S LMIso T F S LMHom T F -1 T LMHom S
12 islmim2 F -1 T LMIso S F -1 T LMHom S F -1 -1 S LMHom T
13 10 11 12 3imtr4i F S LMIso T F -1 T LMIso S