Metamath Proof Explorer


Theorem lmimdim

Description: Module isomorphisms preserve vector space dimensions. (Contributed by Thierry Arnoux, 25-Feb-2025)

Ref Expression
Hypotheses lmimdim.1 φ F S LMIso T
lmimdim.2 φ S LVec
Assertion lmimdim φ dim S = dim T

Proof

Step Hyp Ref Expression
1 lmimdim.1 φ F S LMIso T
2 lmimdim.2 φ S LVec
3 eqid LBasis S = LBasis S
4 3 lbsex S LVec LBasis S
5 2 4 syl φ LBasis S
6 n0 LBasis S b b LBasis S
7 5 6 sylib φ b b LBasis S
8 1 adantr φ b LBasis S F S LMIso T
9 8 resexd φ b LBasis S F b V
10 eqid Base S = Base S
11 eqid Base T = Base T
12 10 11 lmimf1o F S LMIso T F : Base S 1-1 onto Base T
13 f1of1 F : Base S 1-1 onto Base T F : Base S 1-1 Base T
14 8 12 13 3syl φ b LBasis S F : Base S 1-1 Base T
15 10 3 lbsss b LBasis S b Base S
16 15 adantl φ b LBasis S b Base S
17 f1ssres F : Base S 1-1 Base T b Base S F b : b 1-1 Base T
18 14 16 17 syl2anc φ b LBasis S F b : b 1-1 Base T
19 hashf1dmrn F b V F b : b 1-1 Base T b = ran F b
20 9 18 19 syl2anc φ b LBasis S b = ran F b
21 df-ima F b = ran F b
22 21 fveq2i F b = ran F b
23 20 22 eqtr4di φ b LBasis S b = F b
24 3 dimval S LVec b LBasis S dim S = b
25 2 24 sylan φ b LBasis S dim S = b
26 lmimlmhm F S LMIso T F S LMHom T
27 1 26 syl φ F S LMHom T
28 lmhmlvec F S LMHom T S LVec T LVec
29 28 biimpa F S LMHom T S LVec T LVec
30 27 2 29 syl2anc φ T LVec
31 30 adantr φ b LBasis S T LVec
32 eqid LBasis T = LBasis T
33 3 32 lmimlbs F S LMIso T b LBasis S F b LBasis T
34 1 33 sylan φ b LBasis S F b LBasis T
35 32 dimval T LVec F b LBasis T dim T = F b
36 31 34 35 syl2anc φ b LBasis S dim T = F b
37 23 25 36 3eqtr4d φ b LBasis S dim S = dim T
38 7 37 exlimddv φ dim S = dim T