Metamath Proof Explorer


Theorem lmimf1o

Description: An isomorphism of left modules is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Hypotheses islmim.b B = Base R
islmim.c C = Base S
Assertion lmimf1o F R LMIso S F : B 1-1 onto C

Proof

Step Hyp Ref Expression
1 islmim.b B = Base R
2 islmim.c C = Base S
3 1 2 islmim F R LMIso S F R LMHom S F : B 1-1 onto C
4 3 simprbi F R LMIso S F : B 1-1 onto C