Metamath Proof Explorer


Theorem lmimfn

Description: Lemma for module isomorphisms. (Contributed by Stefan O'Rear, 23-Aug-2015)

Ref Expression
Assertion lmimfn LMIso Fn LMod × LMod

Proof

Step Hyp Ref Expression
1 df-lmim LMIso = s LMod , t LMod g s LMHom t | g : Base s 1-1 onto Base t
2 ovex s LMHom t V
3 2 rabex g s LMHom t | g : Base s 1-1 onto Base t V
4 1 3 fnmpoi LMIso Fn LMod × LMod