Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lmimgim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmimlmhm | ||
2 | lmghm | ||
3 | 1 2 | syl | |
4 | eqid | ||
5 | eqid | ||
6 | 4 5 | lmimf1o | |
7 | 4 5 | isgim | |
8 | 3 6 7 | sylanbrc |