Metamath Proof Explorer


Theorem lmimgim

Description: An isomorphism of modules is an isomorphism of groups. (Contributed by Stefan O'Rear, 21-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)

Ref Expression
Assertion lmimgim F R LMIso S F R GrpIso S

Proof

Step Hyp Ref Expression
1 lmimlmhm F R LMIso S F R LMHom S
2 lmghm F R LMHom S F R GrpHom S
3 1 2 syl F R LMIso S F R GrpHom S
4 eqid Base R = Base R
5 eqid Base S = Base S
6 4 5 lmimf1o F R LMIso S F : Base R 1-1 onto Base S
7 4 5 isgim F R GrpIso S F R GrpHom S F : Base R 1-1 onto Base S
8 3 6 7 sylanbrc F R LMIso S F R GrpIso S