Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
|
2 |
|
ismid.d |
|
3 |
|
ismid.i |
|
4 |
|
ismid.g |
|
5 |
|
ismid.1 |
|
6 |
|
lmif.m |
|
7 |
|
lmif.l |
|
8 |
|
lmif.d |
|
9 |
|
lmicl.1 |
|
10 |
|
lmimid.s |
|
11 |
|
lmimid.r |
|
12 |
|
lmimid.a |
|
13 |
|
lmimid.b |
|
14 |
|
lmimid.c |
|
15 |
|
lmimid.d |
|
16 |
10
|
a1i |
|
17 |
16
|
fveq1d |
|
18 |
|
eqid |
|
19 |
1 7 3 4 8 13
|
tglnpt |
|
20 |
1 2 3 7 18 4 19 10 14
|
mircl |
|
21 |
1 2 3 4 5 14 20 18 19
|
ismidb |
|
22 |
17 21
|
mpbid |
|
23 |
22 13
|
eqeltrd |
|
24 |
|
df-ne |
|
25 |
4
|
adantr |
|
26 |
8
|
adantr |
|
27 |
14
|
adantr |
|
28 |
20
|
adantr |
|
29 |
|
simpr |
|
30 |
1 3 7 25 27 28 29
|
tgelrnln |
|
31 |
13
|
adantr |
|
32 |
19
|
adantr |
|
33 |
1 2 3 4 5 14 20
|
midbtwn |
|
34 |
22 33
|
eqeltrrd |
|
35 |
34
|
adantr |
|
36 |
1 3 7 25 27 28 32 29 35
|
btwnlng1 |
|
37 |
31 36
|
elind |
|
38 |
12
|
adantr |
|
39 |
1 3 7 25 27 28 29
|
tglinerflx1 |
|
40 |
15
|
adantr |
|
41 |
1 2 3 7 18 4 19 10 14
|
mirinv |
|
42 |
|
eqcom |
|
43 |
41 42
|
bitrdi |
|
44 |
43
|
biimpar |
|
45 |
44
|
eqcomd |
|
46 |
45
|
ex |
|
47 |
46
|
necon3d |
|
48 |
47
|
imp |
|
49 |
11
|
adantr |
|
50 |
1 2 3 7 25 26 30 37 38 39 40 48 49
|
ragperp |
|
51 |
50
|
ex |
|
52 |
24 51
|
syl5bir |
|
53 |
52
|
orrd |
|
54 |
53
|
orcomd |
|
55 |
1 2 3 4 5 6 7 8 14 20
|
islmib |
|
56 |
23 54 55
|
mpbir2and |
|
57 |
56
|
eqcomd |
|