Metamath Proof Explorer


Theorem lmimlmhm

Description: An isomorphism of modules is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015)

Ref Expression
Assertion lmimlmhm F R LMIso S F R LMHom S

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid Base S = Base S
3 1 2 islmim F R LMIso S F R LMHom S F : Base R 1-1 onto Base S
4 3 simplbi F R LMIso S F R LMHom S