Metamath Proof Explorer


Theorem lmiopp

Description: Line mirroring produces points on the opposite side of the mirroring line. Theorem 10.14 of Schwabhauser p. 92. (Contributed by Thierry Arnoux, 2-Aug-2020)

Ref Expression
Hypotheses lmiopp.p P = Base G
lmiopp.m - ˙ = dist G
lmiopp.i I = Itv G
lmiopp.l L = Line 𝒢 G
lmiopp.g φ G 𝒢 Tarski
lmiopp.h φ G Dim 𝒢 2
lmiopp.d φ D ran L
lmiopp.o O = a b | a P D b P D t D t a I b
lmiopp.n M = lInv 𝒢 G D
lmiopp.a φ A P
lmiopp.1 φ ¬ A D
Assertion lmiopp φ A O M A

Proof

Step Hyp Ref Expression
1 lmiopp.p P = Base G
2 lmiopp.m - ˙ = dist G
3 lmiopp.i I = Itv G
4 lmiopp.l L = Line 𝒢 G
5 lmiopp.g φ G 𝒢 Tarski
6 lmiopp.h φ G Dim 𝒢 2
7 lmiopp.d φ D ran L
8 lmiopp.o O = a b | a P D b P D t D t a I b
9 lmiopp.n M = lInv 𝒢 G D
10 lmiopp.a φ A P
11 lmiopp.1 φ ¬ A D
12 1 2 3 5 6 9 4 7 10 lmicl φ M A P
13 eqidd φ M A = M A
14 1 2 3 5 6 9 4 7 10 12 islmib φ M A = M A A mid 𝒢 G M A D D 𝒢 G A L M A A = M A
15 13 14 mpbid φ A mid 𝒢 G M A D D 𝒢 G A L M A A = M A
16 15 simpld φ A mid 𝒢 G M A D
17 1 2 3 5 6 9 4 7 10 lmilmi φ M M A = A
18 17 eqeq1d φ M M A = M A A = M A
19 1 2 3 5 6 9 4 7 12 lmiinv φ M M A = M A M A D
20 eqcom A = M A M A = A
21 20 a1i φ A = M A M A = A
22 18 19 21 3bitr3d φ M A D M A = A
23 1 2 3 5 6 9 4 7 10 lmiinv φ M A = A A D
24 22 23 bitrd φ M A D A D
25 11 24 mtbird φ ¬ M A D
26 1 2 3 5 6 10 12 midbtwn φ A mid 𝒢 G M A A I M A
27 1 2 3 8 10 12 16 11 25 26 islnoppd φ A O M A