Metamath Proof Explorer


Theorem lmireu

Description: Any point has a unique antecedent through line mirroring. Theorem 10.6 of Schwabhauser p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019)

Ref Expression
Hypotheses ismid.p P = Base G
ismid.d - ˙ = dist G
ismid.i I = Itv G
ismid.g φ G 𝒢 Tarski
ismid.1 φ G Dim 𝒢 2
lmif.m M = lInv 𝒢 G D
lmif.l L = Line 𝒢 G
lmif.d φ D ran L
lmicl.1 φ A P
Assertion lmireu φ ∃! b P M b = A

Proof

Step Hyp Ref Expression
1 ismid.p P = Base G
2 ismid.d - ˙ = dist G
3 ismid.i I = Itv G
4 ismid.g φ G 𝒢 Tarski
5 ismid.1 φ G Dim 𝒢 2
6 lmif.m M = lInv 𝒢 G D
7 lmif.l L = Line 𝒢 G
8 lmif.d φ D ran L
9 lmicl.1 φ A P
10 1 2 3 4 5 6 7 8 9 lmicl φ M A P
11 1 2 3 4 5 6 7 8 9 lmilmi φ M M A = A
12 4 ad2antrr φ b P M b = A G 𝒢 Tarski
13 5 ad2antrr φ b P M b = A G Dim 𝒢 2
14 8 ad2antrr φ b P M b = A D ran L
15 simplr φ b P M b = A b P
16 1 2 3 12 13 6 7 14 15 lmilmi φ b P M b = A M M b = b
17 simpr φ b P M b = A M b = A
18 17 fveq2d φ b P M b = A M M b = M A
19 16 18 eqtr3d φ b P M b = A b = M A
20 19 ex φ b P M b = A b = M A
21 20 ralrimiva φ b P M b = A b = M A
22 fveqeq2 b = M A M b = A M M A = A
23 22 eqreu M A P M M A = A b P M b = A b = M A ∃! b P M b = A
24 10 11 21 23 syl3anc φ ∃! b P M b = A