Metamath Proof Explorer


Theorem lmisfree

Description: A module has a basis iff it is isomorphic to a free module. In settings where isomorphic objects are not distinguished, it is common to define "free module" as any module with a basis; thus for instance lbsex might be described as "every vector space is free". (Contributed by Stefan O'Rear, 26-Feb-2015)

Ref Expression
Hypotheses lmisfree.j J = LBasis W
lmisfree.f F = Scalar W
Assertion lmisfree W LMod J k W 𝑚 F freeLMod k

Proof

Step Hyp Ref Expression
1 lmisfree.j J = LBasis W
2 lmisfree.f F = Scalar W
3 n0 J j j J
4 vex j V
5 4 enref j j
6 2 1 lbslcic W LMod j J j j W 𝑚 F freeLMod j
7 5 6 mp3an3 W LMod j J W 𝑚 F freeLMod j
8 oveq2 k = j F freeLMod k = F freeLMod j
9 8 breq2d k = j W 𝑚 F freeLMod k W 𝑚 F freeLMod j
10 4 9 spcev W 𝑚 F freeLMod j k W 𝑚 F freeLMod k
11 7 10 syl W LMod j J k W 𝑚 F freeLMod k
12 11 ex W LMod j J k W 𝑚 F freeLMod k
13 12 exlimdv W LMod j j J k W 𝑚 F freeLMod k
14 3 13 syl5bi W LMod J k W 𝑚 F freeLMod k
15 lmicsym W 𝑚 F freeLMod k F freeLMod k 𝑚 W
16 lmiclcl W 𝑚 F freeLMod k W LMod
17 2 lmodring W LMod F Ring
18 vex k V
19 eqid F freeLMod k = F freeLMod k
20 eqid F unitVec k = F unitVec k
21 eqid LBasis F freeLMod k = LBasis F freeLMod k
22 19 20 21 frlmlbs F Ring k V ran F unitVec k LBasis F freeLMod k
23 17 18 22 sylancl W LMod ran F unitVec k LBasis F freeLMod k
24 23 ne0d W LMod LBasis F freeLMod k
25 16 24 syl W 𝑚 F freeLMod k LBasis F freeLMod k
26 21 1 lmiclbs F freeLMod k 𝑚 W LBasis F freeLMod k J
27 15 25 26 sylc W 𝑚 F freeLMod k J
28 27 exlimiv k W 𝑚 F freeLMod k J
29 14 28 impbid1 W LMod J k W 𝑚 F freeLMod k