Metamath Proof Explorer


Theorem lmmbr3

Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. (Contributed by NM, 19-Dec-2006) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J = MetOpen D
lmmbr.3 φ D ∞Met X
lmmbr3.5 Z = M
lmmbr3.6 φ M
Assertion lmmbr3 φ F t J P F X 𝑝𝑚 P X x + j Z k j k dom F F k X F k D P < x

Proof

Step Hyp Ref Expression
1 lmmbr.2 J = MetOpen D
2 lmmbr.3 φ D ∞Met X
3 lmmbr3.5 Z = M
4 lmmbr3.6 φ M
5 1 2 lmmbr2 φ F t J P F X 𝑝𝑚 P X x + j k j k dom F F k X F k D P < x
6 3 rexuz3 M j Z k j k dom F F k X F k D P < x j k j k dom F F k X F k D P < x
7 4 6 syl φ j Z k j k dom F F k X F k D P < x j k j k dom F F k X F k D P < x
8 7 ralbidv φ x + j Z k j k dom F F k X F k D P < x x + j k j k dom F F k X F k D P < x
9 8 3anbi3d φ F X 𝑝𝑚 P X x + j Z k j k dom F F k X F k D P < x F X 𝑝𝑚 P X x + j k j k dom F F k X F k D P < x
10 5 9 bitr4d φ F t J P F X 𝑝𝑚 P X x + j Z k j k dom F F k X F k D P < x