Step |
Hyp |
Ref |
Expression |
1 |
|
lmmbr.2 |
|
2 |
|
lmmbr.3 |
|
3 |
|
lmmbr3.5 |
|
4 |
|
lmmbr3.6 |
|
5 |
|
lmmbrf.7 |
|
6 |
|
lmmbrf.8 |
|
7 |
|
elfvdm |
|
8 |
|
cnex |
|
9 |
7 8
|
jctir |
|
10 |
|
uzssz |
|
11 |
|
zsscn |
|
12 |
10 11
|
sstri |
|
13 |
3 12
|
eqsstri |
|
14 |
13
|
jctr |
|
15 |
|
elpm2r |
|
16 |
9 14 15
|
syl2an |
|
17 |
2 6 16
|
syl2anc |
|
18 |
17
|
biantrurd |
|
19 |
3
|
uztrn2 |
|
20 |
19
|
adantll |
|
21 |
5
|
oveq1d |
|
22 |
21
|
breq1d |
|
23 |
22
|
adantrl |
|
24 |
6
|
fdmd |
|
25 |
24
|
eleq2d |
|
26 |
25
|
biimpar |
|
27 |
6
|
ffvelrnda |
|
28 |
26 27
|
jca |
|
29 |
28
|
biantrurd |
|
30 |
|
df-3an |
|
31 |
29 30
|
bitr4di |
|
32 |
31
|
adantrl |
|
33 |
23 32
|
bitr3d |
|
34 |
33
|
anassrs |
|
35 |
20 34
|
syldan |
|
36 |
35
|
ralbidva |
|
37 |
36
|
rexbidva |
|
38 |
37
|
ralbidv |
|
39 |
38
|
anbi2d |
|
40 |
1 2 3 4
|
lmmbr3 |
|
41 |
|
3anass |
|
42 |
40 41
|
bitrdi |
|
43 |
18 39 42
|
3bitr4rd |
|