Metamath Proof Explorer


Theorem lmmcvg

Description: Convergence property of a converging sequence. (Contributed by NM, 1-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmmbr.2 J = MetOpen D
lmmbr.3 φ D ∞Met X
lmmbr3.5 Z = M
lmmbr3.6 φ M
lmmbrf.7 φ k Z F k = A
lmmcvg.8 φ F t J P
lmmcvg.9 φ R +
Assertion lmmcvg φ j Z k j A X A D P < R

Proof

Step Hyp Ref Expression
1 lmmbr.2 J = MetOpen D
2 lmmbr.3 φ D ∞Met X
3 lmmbr3.5 Z = M
4 lmmbr3.6 φ M
5 lmmbrf.7 φ k Z F k = A
6 lmmcvg.8 φ F t J P
7 lmmcvg.9 φ R +
8 breq2 x = R F k D P < x F k D P < R
9 8 3anbi3d x = R k dom F F k X F k D P < x k dom F F k X F k D P < R
10 9 rexralbidv x = R j Z k j k dom F F k X F k D P < x j Z k j k dom F F k X F k D P < R
11 1 2 3 4 lmmbr3 φ F t J P F X 𝑝𝑚 P X x + j Z k j k dom F F k X F k D P < x
12 6 11 mpbid φ F X 𝑝𝑚 P X x + j Z k j k dom F F k X F k D P < x
13 12 simp3d φ x + j Z k j k dom F F k X F k D P < x
14 10 13 7 rspcdva φ j Z k j k dom F F k X F k D P < R
15 3 uztrn2 j Z k j k Z
16 3simpc k dom F F k X F k D P < R F k X F k D P < R
17 5 eleq1d φ k Z F k X A X
18 5 oveq1d φ k Z F k D P = A D P
19 18 breq1d φ k Z F k D P < R A D P < R
20 17 19 anbi12d φ k Z F k X F k D P < R A X A D P < R
21 16 20 syl5ib φ k Z k dom F F k X F k D P < R A X A D P < R
22 15 21 sylan2 φ j Z k j k dom F F k X F k D P < R A X A D P < R
23 22 anassrs φ j Z k j k dom F F k X F k D P < R A X A D P < R
24 23 ralimdva φ j Z k j k dom F F k X F k D P < R k j A X A D P < R
25 24 reximdva φ j Z k j k dom F F k X F k D P < R j Z k j A X A D P < R
26 14 25 mpd φ j Z k j A X A D P < R