Step |
Hyp |
Ref |
Expression |
1 |
|
lmmo.1 |
|
2 |
|
lmmo.4 |
|
3 |
|
lmmo.5 |
|
4 |
|
an4 |
|
5 |
|
nnuz |
|
6 |
|
simprr |
|
7 |
|
1zzd |
|
8 |
2
|
adantr |
|
9 |
|
simprl |
|
10 |
5 6 7 8 9
|
lmcvg |
|
11 |
10
|
ex |
|
12 |
|
simprr |
|
13 |
|
1zzd |
|
14 |
3
|
adantr |
|
15 |
|
simprl |
|
16 |
5 12 13 14 15
|
lmcvg |
|
17 |
16
|
ex |
|
18 |
11 17
|
anim12d |
|
19 |
5
|
rexanuz2 |
|
20 |
|
nnz |
|
21 |
|
uzid |
|
22 |
|
ne0i |
|
23 |
20 21 22
|
3syl |
|
24 |
|
r19.2z |
|
25 |
|
elin |
|
26 |
|
n0i |
|
27 |
25 26
|
sylbir |
|
28 |
27
|
rexlimivw |
|
29 |
24 28
|
syl |
|
30 |
23 29
|
sylan |
|
31 |
30
|
rexlimiva |
|
32 |
19 31
|
sylbir |
|
33 |
18 32
|
syl6 |
|
34 |
4 33
|
syl5bi |
|
35 |
34
|
expdimp |
|
36 |
|
imnan |
|
37 |
35 36
|
sylib |
|
38 |
|
df-3an |
|
39 |
37 38
|
sylnibr |
|
40 |
39
|
anassrs |
|
41 |
40
|
nrexdv |
|
42 |
41
|
nrexdv |
|
43 |
|
haustop |
|
44 |
1 43
|
syl |
|
45 |
|
toptopon2 |
|
46 |
44 45
|
sylib |
|
47 |
|
lmcl |
|
48 |
46 2 47
|
syl2anc |
|
49 |
|
lmcl |
|
50 |
46 3 49
|
syl2anc |
|
51 |
|
eqid |
|
52 |
51
|
hausnei |
|
53 |
52
|
3exp2 |
|
54 |
1 48 50 53
|
syl3c |
|
55 |
54
|
necon1bd |
|
56 |
42 55
|
mpd |
|