| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lmmo.1 |
|
| 2 |
|
lmmo.4 |
|
| 3 |
|
lmmo.5 |
|
| 4 |
|
an4 |
|
| 5 |
|
nnuz |
|
| 6 |
|
simprr |
|
| 7 |
|
1zzd |
|
| 8 |
2
|
adantr |
|
| 9 |
|
simprl |
|
| 10 |
5 6 7 8 9
|
lmcvg |
|
| 11 |
10
|
ex |
|
| 12 |
|
simprr |
|
| 13 |
|
1zzd |
|
| 14 |
3
|
adantr |
|
| 15 |
|
simprl |
|
| 16 |
5 12 13 14 15
|
lmcvg |
|
| 17 |
16
|
ex |
|
| 18 |
11 17
|
anim12d |
|
| 19 |
5
|
rexanuz2 |
|
| 20 |
|
nnz |
|
| 21 |
|
uzid |
|
| 22 |
|
ne0i |
|
| 23 |
20 21 22
|
3syl |
|
| 24 |
|
r19.2z |
|
| 25 |
|
elin |
|
| 26 |
|
n0i |
|
| 27 |
25 26
|
sylbir |
|
| 28 |
27
|
rexlimivw |
|
| 29 |
24 28
|
syl |
|
| 30 |
23 29
|
sylan |
|
| 31 |
30
|
rexlimiva |
|
| 32 |
19 31
|
sylbir |
|
| 33 |
18 32
|
syl6 |
|
| 34 |
4 33
|
biimtrid |
|
| 35 |
34
|
expdimp |
|
| 36 |
|
imnan |
|
| 37 |
35 36
|
sylib |
|
| 38 |
|
df-3an |
|
| 39 |
37 38
|
sylnibr |
|
| 40 |
39
|
anassrs |
|
| 41 |
40
|
nrexdv |
|
| 42 |
41
|
nrexdv |
|
| 43 |
|
haustop |
|
| 44 |
1 43
|
syl |
|
| 45 |
|
toptopon2 |
|
| 46 |
44 45
|
sylib |
|
| 47 |
|
lmcl |
|
| 48 |
46 2 47
|
syl2anc |
|
| 49 |
|
lmcl |
|
| 50 |
46 3 49
|
syl2anc |
|
| 51 |
|
eqid |
|
| 52 |
51
|
hausnei |
|
| 53 |
52
|
3exp2 |
|
| 54 |
1 48 50 53
|
syl3c |
|
| 55 |
54
|
necon1bd |
|
| 56 |
42 55
|
mpd |
|