Metamath Proof Explorer


Theorem lmnn

Description: A condition that implies convergence. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 1-May-2014)

Ref Expression
Hypotheses lmnn.2 J = MetOpen D
lmnn.3 φ D ∞Met X
lmnn.4 φ P X
lmnn.5 φ F : X
lmnn.6 φ k F k D P < 1 k
Assertion lmnn φ F t J P

Proof

Step Hyp Ref Expression
1 lmnn.2 J = MetOpen D
2 lmnn.3 φ D ∞Met X
3 lmnn.4 φ P X
4 lmnn.5 φ F : X
5 lmnn.6 φ k F k D P < 1 k
6 rpreccl x + 1 x +
7 6 adantl φ x + 1 x +
8 7 rpred φ x + 1 x
9 7 rpge0d φ x + 0 1 x
10 flge0nn0 1 x 0 1 x 1 x 0
11 8 9 10 syl2anc φ x + 1 x 0
12 nn0p1nn 1 x 0 1 x + 1
13 11 12 syl φ x + 1 x + 1
14 2 ad2antrr φ x + k 1 x + 1 D ∞Met X
15 4 ad2antrr φ x + k 1 x + 1 F : X
16 eluznn 1 x + 1 k 1 x + 1 k
17 13 16 sylan φ x + k 1 x + 1 k
18 15 17 ffvelrnd φ x + k 1 x + 1 F k X
19 3 ad2antrr φ x + k 1 x + 1 P X
20 xmetcl D ∞Met X F k X P X F k D P *
21 14 18 19 20 syl3anc φ x + k 1 x + 1 F k D P *
22 17 nnrecred φ x + k 1 x + 1 1 k
23 22 rexrd φ x + k 1 x + 1 1 k *
24 rpxr x + x *
25 24 ad2antlr φ x + k 1 x + 1 x *
26 5 adantlr φ x + k F k D P < 1 k
27 17 26 syldan φ x + k 1 x + 1 F k D P < 1 k
28 8 adantr φ x + k 1 x + 1 1 x
29 13 nnred φ x + 1 x + 1
30 29 adantr φ x + k 1 x + 1 1 x + 1
31 17 nnred φ x + k 1 x + 1 k
32 flltp1 1 x 1 x < 1 x + 1
33 28 32 syl φ x + k 1 x + 1 1 x < 1 x + 1
34 eluzle k 1 x + 1 1 x + 1 k
35 34 adantl φ x + k 1 x + 1 1 x + 1 k
36 28 30 31 33 35 ltletrd φ x + k 1 x + 1 1 x < k
37 simplr φ x + k 1 x + 1 x +
38 rpregt0 x + x 0 < x
39 nnrp k k +
40 39 rpregt0d k k 0 < k
41 ltrec1 x 0 < x k 0 < k 1 x < k 1 k < x
42 38 40 41 syl2an x + k 1 x < k 1 k < x
43 37 17 42 syl2anc φ x + k 1 x + 1 1 x < k 1 k < x
44 36 43 mpbid φ x + k 1 x + 1 1 k < x
45 21 23 25 27 44 xrlttrd φ x + k 1 x + 1 F k D P < x
46 45 ralrimiva φ x + k 1 x + 1 F k D P < x
47 fveq2 j = 1 x + 1 j = 1 x + 1
48 47 raleqdv j = 1 x + 1 k j F k D P < x k 1 x + 1 F k D P < x
49 48 rspcev 1 x + 1 k 1 x + 1 F k D P < x j k j F k D P < x
50 13 46 49 syl2anc φ x + j k j F k D P < x
51 50 ralrimiva φ x + j k j F k D P < x
52 nnuz = 1
53 1zzd φ 1
54 eqidd φ k F k = F k
55 1 2 52 53 54 4 lmmbrf φ F t J P P X x + j k j F k D P < x
56 3 51 55 mpbir2and φ F t J P