Metamath Proof Explorer


Theorem lmod0vlid

Description: Left identity law for the zero vector. ( hvaddid2 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses 0vlid.v V = Base W
0vlid.a + ˙ = + W
0vlid.z 0 ˙ = 0 W
Assertion lmod0vlid W LMod X V 0 ˙ + ˙ X = X

Proof

Step Hyp Ref Expression
1 0vlid.v V = Base W
2 0vlid.a + ˙ = + W
3 0vlid.z 0 ˙ = 0 W
4 lmodgrp W LMod W Grp
5 1 2 3 grplid W Grp X V 0 ˙ + ˙ X = X
6 4 5 sylan W LMod X V 0 ˙ + ˙ X = X