Metamath Proof Explorer


Theorem lmod4

Description: Commutative/associative law for left module vector sum. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lmod4.v V = Base W
lmod4.p + ˙ = + W
Assertion lmod4 W LMod X V Y V Z V U V X + ˙ Y + ˙ Z + ˙ U = X + ˙ Z + ˙ Y + ˙ U

Proof

Step Hyp Ref Expression
1 lmod4.v V = Base W
2 lmod4.p + ˙ = + W
3 lmodcmn W LMod W CMnd
4 1 2 cmn4 W CMnd X V Y V Z V U V X + ˙ Y + ˙ Z + ˙ U = X + ˙ Z + ˙ Y + ˙ U
5 3 4 syl3an1 W LMod X V Y V Z V U V X + ˙ Y + ˙ Z + ˙ U = X + ˙ Z + ˙ Y + ˙ U