Metamath Proof Explorer


Theorem lmodbase

Description: The base set of a constructed left vector space. (Contributed by Mario Carneiro, 2-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
Assertion lmodbase B X B = Base W

Proof

Step Hyp Ref Expression
1 lmodstr.w W = Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
2 1 lmodstr W Struct 1 6
3 baseid Base = Slot Base ndx
4 snsstp1 Base ndx B Base ndx B + ndx + ˙ Scalar ndx F
5 ssun1 Base ndx B + ndx + ˙ Scalar ndx F Base ndx B + ndx + ˙ Scalar ndx F ndx · ˙
6 5 1 sseqtrri Base ndx B + ndx + ˙ Scalar ndx F W
7 4 6 sstri Base ndx B W
8 2 3 7 strfv B X B = Base W