Metamath Proof Explorer


Theorem lmodbn0

Description: The base set of a left module is nonempty. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypothesis lmodbn0.b B = Base W
Assertion lmodbn0 W LMod B

Proof

Step Hyp Ref Expression
1 lmodbn0.b B = Base W
2 lmodgrp W LMod W Grp
3 1 grpbn0 W Grp B
4 2 3 syl W LMod B