Step |
Hyp |
Ref |
Expression |
1 |
|
lmodfopne.t |
|
2 |
|
lmodfopne.a |
|
3 |
|
lmodfopne.v |
|
4 |
|
lmodfopne.s |
|
5 |
|
lmodfopne.k |
|
6 |
|
lmodfopne.0 |
|
7 |
|
lmodfopne.1 |
|
8 |
1 2 3 4 5 6 7
|
lmodfopnelem2 |
|
9 |
|
simpl |
|
10 |
|
eqid |
|
11 |
3 10
|
lmod0vcl |
|
12 |
11
|
adantr |
|
13 |
|
eqid |
|
14 |
3 13 2
|
plusfval |
|
15 |
14
|
eqcomd |
|
16 |
9 12 15
|
syl2anr |
|
17 |
|
oveq |
|
18 |
17
|
ad2antlr |
|
19 |
16 18
|
eqtrd |
|
20 |
|
lmodgrp |
|
21 |
20
|
adantr |
|
22 |
3 13 10
|
grprid |
|
23 |
21 9 22
|
syl2an |
|
24 |
4 5 6
|
lmod0cl |
|
25 |
24 11
|
jca |
|
26 |
25
|
adantr |
|
27 |
26
|
adantr |
|
28 |
|
eqid |
|
29 |
3 4 5 1 28
|
scafval |
|
30 |
27 29
|
syl |
|
31 |
24
|
ancli |
|
32 |
31
|
adantr |
|
33 |
32
|
adantr |
|
34 |
4 28 5 10
|
lmodvs0 |
|
35 |
33 34
|
syl |
|
36 |
|
simpr |
|
37 |
3 13 10
|
grprid |
|
38 |
21 36 37
|
syl2an |
|
39 |
4 5 7
|
lmod1cl |
|
40 |
39
|
adantr |
|
41 |
3 4 5 1 28
|
scafval |
|
42 |
40 36 41
|
syl2an |
|
43 |
3 4 28 7
|
lmodvs1 |
|
44 |
43
|
ad2ant2rl |
|
45 |
42 44
|
eqtrd |
|
46 |
|
oveq |
|
47 |
46
|
eqcomd |
|
48 |
47
|
ad2antlr |
|
49 |
36 36
|
jca |
|
50 |
49
|
adantl |
|
51 |
3 13 2
|
plusfval |
|
52 |
50 51
|
syl |
|
53 |
48 52
|
eqtrd |
|
54 |
38 45 53
|
3eqtr2d |
|
55 |
21
|
adantr |
|
56 |
12
|
adantr |
|
57 |
36
|
adantl |
|
58 |
3 13
|
grplcan |
|
59 |
55 56 57 57 58
|
syl13anc |
|
60 |
54 59
|
mpbid |
|
61 |
30 35 60
|
3eqtrd |
|
62 |
19 23 61
|
3eqtr3rd |
|
63 |
8 62
|
mpdan |
|
64 |
63
|
ex |
|
65 |
64
|
necon3d |
|
66 |
65
|
imp |
|