Metamath Proof Explorer


Theorem lmodfopnelem2

Description: Lemma 2 for lmodfopne . (Contributed by AV, 2-Oct-2021)

Ref Expression
Hypotheses lmodfopne.t · ˙ = 𝑠𝑓 W
lmodfopne.a + ˙ = + 𝑓 W
lmodfopne.v V = Base W
lmodfopne.s S = Scalar W
lmodfopne.k K = Base S
lmodfopne.0 0 ˙ = 0 S
lmodfopne.1 1 ˙ = 1 S
Assertion lmodfopnelem2 W LMod + ˙ = · ˙ 0 ˙ V 1 ˙ V

Proof

Step Hyp Ref Expression
1 lmodfopne.t · ˙ = 𝑠𝑓 W
2 lmodfopne.a + ˙ = + 𝑓 W
3 lmodfopne.v V = Base W
4 lmodfopne.s S = Scalar W
5 lmodfopne.k K = Base S
6 lmodfopne.0 0 ˙ = 0 S
7 lmodfopne.1 1 ˙ = 1 S
8 1 2 3 4 5 lmodfopnelem1 W LMod + ˙ = · ˙ V = K
9 8 ex W LMod + ˙ = · ˙ V = K
10 4 5 6 lmod0cl W LMod 0 ˙ K
11 4 5 7 lmod1cl W LMod 1 ˙ K
12 10 11 jca W LMod 0 ˙ K 1 ˙ K
13 eleq2 V = K 0 ˙ V 0 ˙ K
14 eleq2 V = K 1 ˙ V 1 ˙ K
15 13 14 anbi12d V = K 0 ˙ V 1 ˙ V 0 ˙ K 1 ˙ K
16 12 15 syl5ibrcom W LMod V = K 0 ˙ V 1 ˙ V
17 9 16 syld W LMod + ˙ = · ˙ 0 ˙ V 1 ˙ V
18 17 imp W LMod + ˙ = · ˙ 0 ˙ V 1 ˙ V