Metamath Proof Explorer


Theorem lmodindp1

Description: Two independent (non-colinear) vectors have nonzero sum. (Contributed by NM, 22-Apr-2015)

Ref Expression
Hypotheses lmodindp1.v V = Base W
lmodindp1.p + ˙ = + W
lmodindp1.o 0 ˙ = 0 W
lmodindp1.n N = LSpan W
lmodindp1.w φ W LMod
lmodindp1.x φ X V
lmodindp1.y φ Y V
lmodindp1.q φ N X N Y
Assertion lmodindp1 φ X + ˙ Y 0 ˙

Proof

Step Hyp Ref Expression
1 lmodindp1.v V = Base W
2 lmodindp1.p + ˙ = + W
3 lmodindp1.o 0 ˙ = 0 W
4 lmodindp1.n N = LSpan W
5 lmodindp1.w φ W LMod
6 lmodindp1.x φ X V
7 lmodindp1.y φ Y V
8 lmodindp1.q φ N X N Y
9 eqid inv g W = inv g W
10 1 9 4 lspsnneg W LMod X V N inv g W X = N X
11 5 6 10 syl2anc φ N inv g W X = N X
12 11 eqcomd φ N X = N inv g W X
13 12 adantr φ X + ˙ Y = 0 ˙ N X = N inv g W X
14 lmodgrp W LMod W Grp
15 5 14 syl φ W Grp
16 1 2 3 9 grpinvid1 W Grp X V Y V inv g W X = Y X + ˙ Y = 0 ˙
17 15 6 7 16 syl3anc φ inv g W X = Y X + ˙ Y = 0 ˙
18 17 biimpar φ X + ˙ Y = 0 ˙ inv g W X = Y
19 18 sneqd φ X + ˙ Y = 0 ˙ inv g W X = Y
20 19 fveq2d φ X + ˙ Y = 0 ˙ N inv g W X = N Y
21 13 20 eqtrd φ X + ˙ Y = 0 ˙ N X = N Y
22 21 ex φ X + ˙ Y = 0 ˙ N X = N Y
23 22 necon3d φ N X N Y X + ˙ Y 0 ˙
24 8 23 mpd φ X + ˙ Y 0 ˙